当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Reversibly Superwettable Polyester Fabric Based on pH-Responsive Branched Polymer Nanoparticles
Industrial & Engineering Chemistry Research ( IF 3.375 ) Pub Date : 2020-01-16 , DOI: 10.1021/acs.iecr.9b05509
Jiru Jia; Kunlin Chen; Tengchao Zeng; Donggang Yao; Chaoxia Wang

A responsive function is significant to surfaces with special wettability, especially for breaking through their limitations in practical applications. We report a novel strategy, which is effective, scalable, versatile, and low-cost, to produce the pH-responsive superwettable surface by combining the pH-responsive branched polymer nanoparticles (PRBNs) and conventional textile materials. The PRBN exhibiting a spherical shape with strawberry-like rough surface is able to swell (diameter of 71 nm) in an acidic aqueous solution and shrink to its original size (diameter of 42 nm) in a neutral or basic aqueous solution; moreover, the swelling–shrinking transition is reversible. The deposition of PRBNs on polyester fabric provides the surface pH-responsive wettability that is superhydrophobic to a neutral or basic aqueous solution (pH ≥ 7) with a contact angle above 150° and superhydrophilic to an acidic aqueous solution (pH 1) with a contact angle of 0°. Similar to the pH-responsive behavior of nanoparticles, this superhydrophobic–supehydrophilic transition of fabric is also reversible. By adjusting the hydrophobic substituents of PRBN, the wettability of fabric has remarkable changes. The adhesion of PRBNs onto polyester fabric can be obviously enhanced by the heating-press procedure so that its washability improves. These results may provide a new horizon to design new-generation smart textiles via utilizing controllable wettability.
更新日期:2020-01-17

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug