当前位置: X-MOL 学术Comput. Vis. Image Underst. › 论文详情
An efficient EM-ICP algorithm for non-linear registration of large 3D point sets
Computer Vision and Image Understanding ( IF 2.645 ) Pub Date : 2019-11-12 , DOI: 10.1016/j.cviu.2019.102854
Benoit Combès; Sylvain Prima

In this paper, we present a new method for non-linear pairwise registration of 3D point sets. In this method, we consider the points of the first set as the draws of a Gaussian mixture model whose centres are the displaced points of the second set. Next we perform a maximum a posteriori estimation of the parameters (which include the unknown transformation) of this model using the expectation–maximisation (EM) algorithm. Compared to other methods using the same “EM-ICP” framework, we propose four key modifications leading to an efficient algorithm allowing for fast registration of large 3D point sets: (1) truncation of the cost function; (2) symmetrisation of the point-to-point correspondences; (3) specification of priors on these correspondences using differential geometry; (4) efficient encoding of deformations using the RKHS theory and the Fourier analysis. We evaluate the added value of these modifications and compare our method to the state-of-the-art CPD algorithm on real and simulated data.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug