当前位置: X-MOL 学术Comput. Vis. Image Underst. › 论文详情
CRF with deep class embedding for large scale classification
Computer Vision and Image Understanding ( IF 2.645 ) Pub Date : 2019-11-06 , DOI: 10.1016/j.cviu.2019.102865
Eran Goldman; Jacob Goldberger

This paper presents a novel deep learning architecture for classifying structured objects in ultrafine-grained datasets, where classes may not be clearly distinguishable by their appearance but rather by their context. We model sequences of images as linear-chain CRFs, and jointly learn the parameters from both local-visual features and neighboring class information. The visual features are learned by convolutional layers, whereas class-structure information is reparametrized by factorizing the CRF pairwise potential matrix. This forms a context-based semantic similarity space, learned alongside the visual similarities, and dramatically increases the learning capacity of contextual information. This new parametrization, however, forms a highly nonlinear objective function which is challenging to optimize. To overcome this, we develop a novel surrogate likelihood which allows for a local likelihood approximation of the original CRF with integrated batch-normalization. This model overcomes the difficulties of existing CRF methods to learn the contextual relationships thoroughly when there is a large number of classes and the data is sparse. The performance of the proposed method is illustrated on a huge dataset that contains images of retail-store product displays, and shows significantly improved results compared to linear CRF parametrization, unnormalized likelihood optimization, and RNN modeling. We also show improved results on a standard OCR dataset.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug