当前位置: X-MOL 学术Estuar. Coasts › 论文详情
Depth Affects Seagrass Restoration Success and Resilience to Marine Heat Wave Disturbance
Estuaries and Coasts ( IF 2.686 ) Pub Date : 2020-01-02 , DOI: 10.1007/s12237-019-00685-0
Lillian R. Aoki, Karen J. McGlathery, Patricia L. Wiberg, Alia Al-Haj

Abstract Accelerating losses of seagrass meadows motivate the restoration of these highly productive and beneficial ecosystems. Understanding how environmental parameters including depth and temperature affect restoration trajectories through time is key to conserving and restoring seagrass meadows. We used a long-term (12-year), landscape-scale experiment to test the effect of depth on eelgrass (Zostera marina) restoration success and resilience to a marine heat wave (MHW) disturbance. We found that depth was a critical determinant of seagrass restoration success, with no long-term success at sites deeper than 1.5 m below mean sea level (MSL) or shallower than − 0.8 m MSL. Seeds germinated below − 1.5 m MSL, but shoots did not persist, confirming earlier predictions from a hydrodynamic-vegetation model. Depth was also a significant predictor of seagrass resilience following MHW disturbance. Our results suggest that areas of restored seagrass that are resilient to temperature stress exist across an intermediate depth range, excluding the shallowest and deepest portions of the full habitable depth range for restored seagrass. Over the next decades, sea-level rise will likely affect both the habitable area and the resilient area, available for seagrass restoration. However, seagrass enhancement of sediment accretion may at least partially offset sea-level rise rates. As ocean temperatures warm and MHWs occur more frequently, the resilience of seagrass meadows to temperature stress will be of increasing concern. These results suggest that depth is a critical parameter that will help determine what areas are most resilient and therefore most suitable for conservation and restoration.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug