当前位置: X-MOL 学术VLDB J. › 论文详情
Skyline queries over incomplete data streams
The VLDB Journal ( IF 2.904 ) Pub Date : 2019-10-17 , DOI: 10.1007/s00778-019-00577-6
Weilong Ren; Xiang Lian; Kambiz Ghazinour

Nowadays, efficient and effective processing over massive stream data has attracted much attention from the database community, which are useful in many real applications such as sensor data monitoring, network intrusion detection, and so on. In practice, due to the malfunction of sensing devices or imperfect data collection techniques, real-world stream data may often contain missing or incomplete data attributes. In this paper, we will formalize and tackle a novel and important problem, named skyline query over incomplete data stream (Sky-iDS), which retrieves skyline objects (in the presence of missing attributes) with high confidences from incomplete data stream. In order to tackle the Sky-iDS problem, we will design efficient approaches to impute missing attributes of objects from incomplete data stream via differential dependency (DD) rules. We will propose effective pruning strategies to reduce the search space of the Sky-iDS problem, devise cost-model-based index structures to facilitate the data imputation and skyline computation at the same time, and integrate our proposed techniques into an efficient Sky-iDS query answering algorithm. Extensive experiments have been conducted to confirm the efficiency and effectiveness of our Sky-iDS processing approach over both real and synthetic data sets.
更新日期:2019-10-17

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug