当前位置: X-MOL 学术VLDB J. › 论文详情
Parallelizing approximate single-source personalized PageRank queries on shared memory
The VLDB Journal ( IF 1.973 ) Pub Date : 2019-10-08 , DOI: 10.1007/s00778-019-00576-7
Runhui Wang, Sibo Wang, Xiaofang Zhou

Abstract Given a directed graph G, a source node s, and a target node t, the personalized PageRank (PPR) \(\pi (s,t)\) measures the importance of node t with respect to node s. In this work, we study the single-source PPR query, which takes a source node s as input and outputs the PPR values of all nodes in G with respect to s. The single-source PPR query finds many important applications, e.g., community detection and recommendation. Deriving the exact answers for single-source PPR queries is prohibitive, so most existing work focuses on approximate solutions. Nevertheless, existing approximate solutions are still inefficient, and it is challenging to compute single-source PPR queries efficiently for online applications. This motivates us to devise efficient parallel algorithms running on shared-memory multi-core systems. In this work, we present how to efficiently parallelize the state-of-the-art index-based solution FORA, and theoretically analyze the complexity of the parallel algorithms. Theoretically, we prove that our proposed algorithm achieves a time complexity of \(O(W/P+\log ^2{n})\), where W is the time complexity of sequential FORA algorithm, P is the number of processors used, and n is the number of nodes in the graph. FORA includes a forward push phase and a random walk phase, and we present optimization techniques to both phases, including effective maintenance of active nodes, improving the efficiency of memory access, and cache-aware scheduling. Extensive experimental evaluation demonstrates that our solution achieves up to 37\(\times \) speedup on 40 cores and 3.3\(\times \) faster than alternatives on 40 cores. Moreover, the forward push alone can be used for local graph clustering, and our parallel algorithm for forward push is 4.8\(\times \) faster than existing parallel alternatives.
更新日期:2020-01-06

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug