当前位置: X-MOL 学术VLDB J. › 论文详情
Top- k relevant semantic place retrieval on spatiotemporal RDF data
The VLDB Journal ( IF 2.904 ) Pub Date : 2019-11-19 , DOI: 10.1007/s00778-019-00591-8
Dingming Wu; Hao Zhou; Jieming Shi; Nikos Mamoulis

RDF data are traditionally accessed using structured query languages, such as SPARQL. However, this requires users to understand the language as well as the RDF schema. Keyword search on RDF data aims at relieving users from these requirements; users only input a set of keywords, and the goal is to find small RDF subgraphs that contain all keywords. At the same time, popular RDF knowledge bases also include spatial and temporal semantics, which opens the road to spatiotemporal-based search operations. In this work, we propose and study novel keyword-based search queries with spatial semantics on RDF data, namely kSP queries. The objective of the kSP query is to find RDF subgraphs which contain the query keywords and are rooted at spatial entities close to the query location. To add temporal semantics to the kSP query, we propose the kSPT query that uses two ways to incorporate temporal information. One way is considering the temporal differences between the keyword-matched vertices and the query timestamp. The other way is using a temporal range to filter keyword-matched vertices. The novelty of kSP and kSPT queries is that they are spatiotemporal-aware and that they do not rely on the use of structured query languages. We design an efficient approach containing two pruning techniques and a data preprocessing technique for the processing of kSP queries. The proposed approach is extended and improved with four optimizations to evaluate kSPT queries. Extensive empirical studies on two real datasets demonstrate the superior and robust performance of our proposals compared to baseline methods.
更新日期:2019-11-19

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug