当前位置: X-MOL 学术J. Complex. › 论文详情
Sampling schemes and recovery algorithms for functions of few coordinate variables
Journal of Complexity ( IF 0.888 ) Pub Date : 2019-12-27 , DOI: 10.1016/j.jco.2019.101457
Simon Foucart

When a multivariate function does not depend on all of its variables, it can be approximated from fewer point evaluations than otherwise required. This has been previously quantified e.g. in the case where the target function is Lipschitz. This note examines the same problem under other assumptions on the target function. If it is linear or quadratic, then connections to compressive sensing are exploited in order to determine the number of point evaluations needed for recovering it exactly. If it is coordinatewise increasing, then connections to group testing are exploited in order to determine the number of point evaluations needed for recovering the set of active variables. A particular emphasis is put on explicit sets of evaluation points and on practical recovery methods. The results presented here also add a new contribution to the field of group testing.
更新日期:2020-01-04

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug