当前位置: X-MOL 学术J. Complex. › 论文详情
Optimal approximation order of piecewise constants on convex partitions
Journal of Complexity ( IF 0.888 ) Pub Date : 2019-11-06 , DOI: 10.1016/j.jco.2019.101444
Oleg Davydov; Oleksandr Kozynenko; Dmytro Skorokhodov

We prove that the error of the best nonlinear Lp-approximation by piecewise constants on convex partitions is O(N−2d+1), where N is the number of cells, for all functions in the Sobolev space Wq2(Ω) on a cube Ω⊂Rd, d⩾2, as soon as 2d+1+1p−1q⩾0. The approximation order O(N−2d+1) is achieved on a polyhedral partition obtained by anisotropic refinement of an adaptive dyadic partition. Further estimates of the approximation order from the above and below are given for various Sobolev and Sobolev–Slobodeckij spaces Wqr(Ω) embedded in Lp(Ω), some of which also improve the standard estimate O(N−1d) known to be optimal on isotropic partitions.
更新日期:2020-01-04

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug