当前位置: X-MOL 学术Discret. Math. › 论文详情
Partial difference sets in C2n×C2n
Discrete Mathematics ( IF 0.728 ) Pub Date : 2019-12-23 , DOI: 10.1016/j.disc.2019.111744
Martin E. Malandro; Ken W. Smith

Let Gn denote the group C2n×C2n, where Ck is the cyclic group of order k. We give an algorithm for enumerating the regular nontrivial partial difference sets (PDS) in Gn. We use our algorithm to obtain all of these PDS in Gn for 2≤n≤9, and we obtain partial results for n=10 and n=11. Most of these PDS are new. For n≤4 we also identify group-inequivalent PDS. Our approach involves constructing tree diagrams and canonical colorings of these diagrams. Both the total number and the number of group-inequivalent PDS in Gn appear to grow super-exponentially in n. For n=9, a typical canonical coloring represents in excess of 10146 group-inequivalent PDS, and there are precisely 2520 reversible Hadamard difference sets.
更新日期:2020-01-08

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug