当前位置: X-MOL 学术Appl. Geochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wellbore cement alteration during decades of abandonment and following CO2 attack – A geochemical modelling study in the area of potential CO2 reservoirs in the Pannonian Basin
Applied Geochemistry ( IF 3.4 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.apgeochem.2019.104516
Zsuzsanna Szabó-Krausz , Nóra Edit Gál , Viktória Gável , György Falus

Abstract In East-Central Europe, the sedimentary rocks and saline reservoirs of the Pannonian Basin provide the greatest potential for geological sequestration of CO2. However, there is no knowledge about the integrity of cement casing and plugs in abandoned wellbores drilled in the last century, which surround the potential CO2 geological storage sites. Thermodynamic and kinetic batch, and 1D kinetic reactive transport models have been built up in PHREEQC to estimate the present composition of hydrated cement in different depths (106, 1478, 2136 and 2718 m) of these abandoned wellbores and, to access cement reactivity for the effect of potentially injected CO2. The wellbore cements are all predicted to presently consist of mainly calcium silicate hydrate (CSH) and portlandite but differences occur due to the stability of ettringite connected to the temperature of the geological environment. With the depth, the amount of potentially dissolved CO2 increases which induces the breakdown of portlandite and CSH in the cement, and the major precipitation of calcite and amorphous silica. The transformation affects the whole width of the cement casing after about 2–3 years in most of the depths. However, the calculated mass transfer among minerals indicate a 2–6% porosity drop, which raises the attention to potential pore clogging. This process significantly reduces the risks of abandoned wellbores when implementing CO2 geological storage.

中文翻译:

废弃几十年和 CO2 攻击后的井筒水泥蚀变——潘诺尼亚盆地潜在 CO2 储层区域的地球化学模型研究

摘要 在东欧中欧,潘诺尼亚盆地的沉积岩和咸水储层为 CO2 的地质封存提供了最大的潜力。然而,上个世纪钻探的废弃井筒中水泥套管和塞子的完整性一无所知,这些井筒围绕着潜在的 CO2 地质储存地点。在 PHREEQC 中建立了热力学和动力学批次以及一维动力学反应输运模型,以估计这些废弃井眼不同深度(106、1478、2136 和 2718 m)的水化水泥的当前成分,并获得水泥反应性可能注入的 CO2 的影响。据预测,目前井筒水泥主要由水化硅酸钙 (CSH) 和硅酸盐组成,但由于钙矾石的稳定性与地质环境的温度有关,因此会出现差异。随着深度的增加,潜在溶解的 CO2 量增加,这会导致水泥中的硅酸盐和 CSH 分解,以及方解石和无定形二氧化硅的主要沉淀。在大部分深度约 2-3 年后,这种转变会影响水泥套管的整个宽度。然而,计算出的矿物之间的传质表明孔隙率下降了 2-6%,这引起了对潜在孔隙堵塞的关注。在实施 CO2 地质封存时,该过程显着降低了废弃井筒的风险。潜在溶解的 CO2 量增加,这会导致水泥中的硅酸盐和 CSH 分解,以及方解石和无定形二氧化硅的主要沉淀。在大部分深度约 2-3 年后,这种转变会影响水泥套管的整个宽度。然而,计算出的矿物之间的传质表明孔隙率下降了 2-6%,这引起了对潜在孔隙堵塞的关注。在实施 CO2 地质封存时,该过程显着降低了废弃井筒的风险。潜在溶解的 CO2 量增加,这会导致水泥中的硅酸盐和 CSH 分解,以及方解石和无定形二氧化硅的主要沉淀。在大部分深度约 2-3 年后,这种转变会影响水泥套管的整个宽度。然而,计算出的矿物之间的传质表明孔隙率下降了 2-6%,这引起了对潜在孔隙堵塞的关注。在实施 CO2 地质封存时,该过程显着降低了废弃井筒的风险。计算出的矿物之间的传质表明孔隙率下降了 2-6%,这引起了对潜在孔隙堵塞的关注。在实施 CO2 地质封存时,该过程显着降低了废弃井筒的风险。计算出的矿物之间的传质表明孔隙率下降了 2-6%,这引起了对潜在孔隙堵塞的关注。在实施 CO2 地质封存时,该过程显着降低了废弃井筒的风险。
更新日期:2020-02-01
down
wechat
bug