当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Connectivity-based cylinder detection in unorganized point clouds
Pattern Recognition ( IF 5.898 ) Pub Date : 2019-12-19 , DOI: 10.1016/j.patcog.2019.107161
Abner M.C. Araújo; Manuel M. Oliveira

Cylinder detection is an important step in reverse engineering of industrial sites, as such environments often contain a large number of cylindrical pipes and tanks. However, existing techniques for cylinder detection require the specification of several parameters which are difficult to adjust because their values depend on the noise level of the input point cloud. Also, these solutions often expect the cylinders to be either parallel or perpendicular to the ground. We present a cylinder-detection technique that is robust to noise, contains parameters which require little to no fine-tuning, and can handle cylinders with arbitrary orientations. Our approach is based on a robust linear-time circle-detection algorithm that naturally discards outliers, allowing our technique to handle datasets with various density and noise levels while using a set of default parameter values. It works by projecting the point cloud onto a set of directions over the unit hemisphere and detecting circular projections formed by samples defining connected components in 3D. The extracted cylindrical surfaces are obtained by fitting a cylinder to each connected component. We compared our technique against the state-of-the-art methods on both synthetic and real datasets containing various densities and noise levels, and show that it outperforms existing techniques in terms of accuracy and robustness to noise, while still maintaining a competitive running time.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug