当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Dissimilarity-based representations for one-class classification on time series
Pattern Recognition ( IF 5.898 ) Pub Date : 2019-11-20 , DOI: 10.1016/j.patcog.2019.107122
Stefano Mauceri; James Sweeney; James McDermott

In several real-world classification problems it can be impractical to collect samples from classes other than the one of interest, hence the need for classifiers trained on a single class. There is a rich literature concerning binary and multi-class time series classification but less concerning one-class learning. In this study, we investigate the little-explored one-class time series classification problem. We represent time series as vectors of dissimilarities from a set of time series referred to as prototypes. Based on this approach, we evaluate a Cartesian product of 12 dissimilarity measures, and 8 prototype methods (strategies to select prototypes). Finally, a one-class nearest neighbor classifier is used on the dissimilarity-based representations (DBR). Experimental results show that DBR are competitive overall when compared with a strong baseline on the data-sets of the UCR/UEA archive. Additionally, DBR enable dimensionality reduction, and visual exploration of data-sets.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug