当前位置: X-MOL 学术Mach. Learn. › 论文详情
On some graph-based two-sample tests for high dimension, low sample size data
Machine Learning ( IF 2.809 ) Pub Date : 2019-11-13 , DOI: 10.1007/s10994-019-05857-4
Soham Sarkar, Rahul Biswas, Anil K. Ghosh

Abstract Testing for equality of two high-dimensional distributions is a challenging problem, and this becomes even more challenging when the sample size is small. Over the last few decades, several graph-based two-sample tests have been proposed in the literature, which can be used for data of arbitrary dimensions. Most of these test statistics are computed using pairwise Euclidean distances among the observations. But, due to concentration of pairwise Euclidean distances, these tests have poor performance in many high-dimensional problems. Some of them can have powers even below the nominal level when the scale-difference between two distributions dominates the location-difference. To overcome these limitations, we introduce some new dissimilarity indices and use them to modify some popular graph-based tests. These modified tests use the distance concentration phenomenon to their advantage, and as a result, they outperform the corresponding tests based on the Euclidean distance in a wide variety of examples. We establish the high-dimensional consistency of these modified tests under fairly general conditions. Analyzing several simulated as well as real data sets, we demonstrate their usefulness in high dimension, low sample size situations.
更新日期:2020-01-04

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug