当前位置: X-MOL 学术Cellulose › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency
Cellulose ( IF 5.7 ) Pub Date : 2020-01-04 , DOI: 10.1007/s10570-019-02959-z
Jihye Lim , J. R. Kim

Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H*, which is characterized by Tnp. The prediction and measurement of the apparent contact angle \( \theta_{nf} \) in CA-SiO2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.

中文翻译:

醋酸纤维素纳米纤维的几何结构改性及其对耐液/拒水性的影响

表面改性(改变几何结构或表面能)是提高固体表面的耐液体性/疏水性的关键因素。特别是,来自几何结构的粗糙度提供了空隙空间,可增强液滴应克服的纳米纤维能量屏障的渗透能力,从而防止液滴从Cassie-Baxter状态转变为Wenzel状态。在这项工作中,通过将Cassie-Baxter模型扩展到醋酸纤维素(CA)纳米纤维中,截留SiO 2纳米颗粒,并检查由硅酸盐形成的空隙对空间的影响,提出了一种在耐液体/拒液性方面表现优异的几何结构设计。夹带SiO 2进入纳米纤维的预测和实验。使用H *简化了扩展的Cassie–Baxter方程,其特征是T np。CA-SiO 2纳米织物中表观接触角\(\ theta_ {nf} \)的预测和测量显示出良好的一致性,结果强调了空隙空间在提高耐液性/斥水性的同时最小化用于改变表面的化学处理的作用。能量和几何结构。
更新日期:2020-01-04
down
wechat
bug