当前位置: X-MOL 学术IEEE Microw. Wirel. Compon. Lett. › 论文详情
Hyperparameter Optimization of Two-Hidden-Layer Neural Networks for Power Amplifiers Behavioral Modeling Using Genetic Algorithms
IEEE Microwave and Wireless Components Letters ( IF 2.310 ) Pub Date : 2019-11-12 , DOI: 10.1109/lmwc.2019.2950801
Siqi Wang; Morgan Roger; Julien Sarrazin; Caroline Lelandais-Perrault

Neural networks (NNs) are efficient techniques for behavioral modeling of power amplifiers (PAs). This letter proposes a genetic algorithm to determine the optimal hyperparameters of the NN model for a PA. Different activation functions are compared. The necessary number of training epochs is also studied to get an optimal solution with a significantly reduced computational complexity. Experimental measurements on a PA with different signals validate the NN models determined by the proposed method.
更新日期:2020-01-04

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug