当前位置: X-MOL 学术IEEE ACM Trans. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accurate Recovery of Missing Network Measurement Data With Localized Tensor Completion
IEEE/ACM Transactions on Networking ( IF 3.0 ) Pub Date : 2019-10-09 , DOI: 10.1109/tnet.2019.2940147
Kun Xie , Xiangge Wang , Xin Wang , Yuxiang Chen , Gaogang Xie , Yudian Ouyang , Jigang Wen , Jiannong Cao , Dafang Zhang

The inference of the network traffic data from partial measurements data becomes increasingly critical for various network engineering tasks. By exploiting the multi-dimensional data structure, tensor completion is a promising technique for more accurate missing data inference. However, existing tensor completion algorithms generally have the strong assumption that the tensor data have a global low-rank structure, and try to find a single and global model to fit the data of the whole tensor. In a practical network system, a subset of data may have stronger correlation. In this work, we propose a novel localized tensor completion model (LTC) to increase the data recovery accuracy by taking advantage of the stronger local correlation of data to form and recover sub-tensors each with a lower rank. Despite that it is promising to use local tensors, the finding of correlated entries faces two challenges, the data with adjacent indexes are not ones with higher correlation and it is difficult to find the similarity of data with missing tensor entries. To conquer the challenges, we propose several novel techniques: efficiently calculating the candidate anchor points based on locality-sensitive hash (LSH), building sub-tensors around properly selected anchor points, encoding factor matrices to facilitate the finding of similarity with missing entries, and similarity-aware local tensor completion and data fusion. We have done extensive experiments using real traffic traces. Our results demonstrate that LTC is very effective in increasing the tensor recovery accuracy without depending on specific tensor completion algorithms.

中文翻译:

通过局部张量完成来准确恢复丢失的网络测量数据

对于各种网络工程任务,从局部测量数据推断网络流量数据变得越来越重要。通过利用多维数据结构,张量完成是一种用于更准确地丢失数据推断的有前途的技术。但是,现有的张量完成算法通常都假定张量数据具有全局低秩结构,并试图找到一个单一的全局模型来拟合整个张量的数据。在实际的网络系统中,数据子集可能具有更强的相关性。在这项工作中,我们提出了一种新颖的局部张量完成模型(LTC),以利用数据的较强局部相关性来形成和恢复每个具有较低秩的子张量,从而提高数据恢复的准确性。尽管有希望使用局部张量,相关条目的发现面临两个挑战,相邻索引的数据不是具有较高相关性的数据,很难找到缺少张量条目的数据的相似性。为了克服挑战,我们提出了几种新颖的技术:基于局部敏感哈希(LSH)高效地计算候选锚点,围绕正确选择的锚点构建子张量,编码因子矩阵以促进与缺失项的相似度的发现,以及具有相似性的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。具有相邻索引的数据不是具有较高相关性的数据,并且很难找到缺少张量条目的数据的相似性。为了克服挑战,我们提出了几种新颖的技术:基于局部敏感哈希(LSH)高效地计算候选锚点,围绕正确选择的锚点构建子张量,编码因子矩阵以促进与缺失项的相似度的发现,以及具有相似性的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。具有相邻索引的数据不是具有较高相关性的数据,并且很难找到缺少张量条目的数据的相似性。为了克服挑战,我们提出了几种新颖的技术:基于局部敏感哈希(LSH)高效地计算候选锚点,围绕正确选择的锚点构建子张量,编码因子矩阵以促进与缺失项的相似度的发现,以及具有相似性的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。为了克服挑战,我们提出了几种新颖的技术:基于局部敏感哈希(LSH)高效地计算候选锚点,围绕正确选择的锚点构建子张量,编码因子矩阵以促进与缺失项的相似度的发现,以及具有相似性的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。为了克服挑战,我们提出了几种新颖的技术:基于局部敏感哈希(LSH)高效地计算候选锚点,围绕正确选择的锚点构建子张量,编码因子矩阵以促进与缺失项的相似度的发现,以及具有相似性的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。编码因子矩阵,以促进查找缺少条目的相似度,以及相似度感知的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。编码因子矩阵,以方便查找缺少条目的相似度,以及相似度感知的局部张量完成和数据融合。我们已经使用实际流量跟踪进行了广泛的实验。我们的结果表明,LTC在提高张量恢复精度方面非常有效,而无需依赖特定的张量完成算法。
更新日期:2020-01-04
down
wechat
bug