当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Erratum: “Abelian Arithmetic Chern–Simons Theory and Arithmetic Linking Numbers”
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2019-05-31 , DOI: 10.1093/imrn/rnz097
Chung H, Kim D, Kim M, et al.

We wish to point out errors in the paper “Abelian Arithmetic Chern–Simons Theory and Arithmetic Linking Numbers”, International Mathematics Research Notices, Vol. 2017, No. 00, pp. 1–29. The main error concerns the symmetry of the “ramified case” of the height pairing, which relies on the vanishing of the Bockstein map in Proposition 3.5. The surjectivity claimed in the 1st line of the proof of Proposition 3.5 is incorrect. The specific results that are affected are Proposition 3.5; Lemmas 3.6, 3.7, 3.8, and 3.9; and Corollary 3.11. The definition of the $(S,n)$-height pairing following Lemma 3.9 is also invalid, since the symmetry of the pairing was required for it to be well defined. The results of Section 3 before Proposition 3.5 as well as those of the other Sections are unaffected.Proposition 3.10 is correct, but the proof is unclear and has some sign errors. So we include here a correction. As in the paper, let $I$ be an ideal such that $I^n$ is principal in ${\mathcal{O}}_{F,S}$. Write $I^n=(f^{-1})$. Then the Kummer cocycles $k_n(f)$ will be in $Z^1(U, {{\mathbb{Z}}/{n}{\mathbb{Z}}})$. For any $a\in F$, denote by $a_S$ its image in $\prod _{v\in S} F_v$. Thus, we get an element $$\begin{equation*}[f]_{S,n}:=[(k_n(f), k_{n^2}(f_S), 0)] \in Z^1(U, {{{\mathbb{Z}}}/{n}{{\mathbb{Z}}}} \times_S{\mathbb{Z}}/n^2{\mathbb{Z}}),\end{equation*}$$which is well defined in cohomology independently of the choice of roots used to define the Kummer cocycles. (We have also trivialized both $\mu _{n^2}$ and $\mu _n$.)
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug