当前位置: X-MOL 学术Appl. Phys. A › 论文详情
Structural and electrical investigations of pure and rare earth (Er and Pr)-doped NiO nanoparticles
Applied Physics A ( IF 1.784 ) Pub Date : 2020-01-03 , DOI: 10.1007/s00339-019-3247-8
J. Al Boukhari, A. Khalaf, R. Awad

Applying the coprecipitation technique, we synthesized PVA-capped Ni0.98RE0.02O (RE = Er md Pr) nanoparticles. Thermogravimetric analysis (TGA) was performed to study the thermal stability of the prepared samples to choose the calcination temperature accordingly. Thermal stability was attained at ~ 823 K with no further thermal decomposition beyond. The crystallinity and phase formation of the prepared samples were confirmed by powder X-ray diffraction XRD. Studying the effect of RE3+ doping on the structural parameters of NiO nanoparticles was facilitated by X-ray peak profile analysis, based on the Debye Scherer model, Williamson–Hall model and size strain plot. The doped samples exhibited smaller lattice parameter and strain, with the minimum strain along the (200) direction. Also, a smaller crystallite size was found for the doped samples, depending on the dopant’s ionic radius, giving rise to higher dislocation density and specific surface area. Transmission electron microscopy (TEM) proved the nanoscale of the prepared samples, in agreement with the XRD outcomes, and revealed slight agglomeration of homogeneous nanoparticles. DC conductivity indicated the semiconducting behavior of the prepared samples, triggered by Ni2+ vacancies. Hopping mechanism was found to be the conduction process with two activation energies, depending on the temperature range of study. The dielectric behavior was explained by Maxwell–Wagner interfacial polarization, in agreement with Koop’s theory. The correlated barrier hopping mechanism CBH was found to be the conduction mechanism. Moreover, the Nyquist plot was investigated. Doping by rare earth elements resulted in an increase in dielectric constant, AC and DC conductivities.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug