当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
Excess Solute Carbon and Tetragonality in As-Quenched Fe-1Mn-C (C:0.07 to 0.8 Mass Pct) Martensite
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 2020-01-03 , DOI: 10.1007/s11661-019-05617-y
Naoki Maruyama, Shinichiro Tabata, Hiroyuki Kawata

The carbon distribution behavior and crystal structure of as-quenched martensite in Fe-1Mn-C (C: 0.07 to 0.8 mass pct) steels were quantitatively investigated by atom probe tomography (APT) and X-ray diffraction with Rietveld analysis. APT revealed that the martensite steels contained quantities of carbon in solid solution far beyond its solubility in body-centered cubic (bcc)-Fe in all the alloys investigated; the carbon atoms were non-homogeneously distributed as carbides or aggregates on dislocations due to autotempering. Tetragonality was observed in the steels with interstitial solute carbon concentrations in the range of 0.1 to 0.7 mass pct, but was not evident below 0.1 mass pct. The appearance and disappearance of tetragonality in the low-carbon steels may be explained by the disordered bcc ↔ ordered body-centered tetragonal (bct) mechanism, considering the partial tetragonality due to the heterogeneity of the interstitial solute carbon distribution. The existence of tetragonality in the autotempered low-carbon steels can alternatively be understood by a mechanism based on the kinetic decrease of tetragonality during cooling, where the microscopic strain release is the rate-controlling process. The excess carbon solubility in the autotempered low- and medium-carbon martensite is due to the existence of tetragonal distortions, owing to the slow kinetics of the tetragonality decrease during cooling.
更新日期:2020-01-04

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug