当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dendritic action potentials and computation in human layer 2/3 cortical neurons
Science ( IF 44.7 ) Pub Date : 2020-01-02 , DOI: 10.1126/science.aax6239
Albert Gidon 1 , Timothy Adam Zolnik 1 , Pawel Fidzinski 2, 3 , Felix Bolduan 4 , Athanasia Papoutsi 5 , Panayiota Poirazi 5 , Martin Holtkamp 2 , Imre Vida 3, 4 , Matthew Evan Larkum 1, 3
Affiliation  

Human dendrites are special A special developmental program in the human brain drives the disproportionate thickening of cortical layer 2/3. This suggests that the expansion of layer 2/3, along with its numerous neurons and their large dendrites, may contribute to what makes us human. Gidon et al. thus investigated the dendritic physiology of layer 2/3 pyramidal neurons in slices taken from surgically resected brain tissue in epilepsy patients. Dual somatodendritic recordings revealed previously unknown classes of action potentials in the dendrites of these neurons, which make their activity far more complex than has been previously thought. These action potentials allow single neurons to solve two long-standing computational problems in neuroscience that were considered to require multilayer neural networks. Science, this issue p. 83 Dendritic action potentials extend the repertoire of computations available to human neurons. The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs—a computation conventionally thought to require multilayered networks.

中文翻译:

人类第 2/3 层皮层神经元的树突动作电位和计算

人类树突是特殊的 人类大脑中一个特殊的发育程序驱动了皮质层 2/3 的不成比例的增厚。这表明第 2/3 层的扩张,连同其众多的神经元和它们的大树突,可能有助于使我们成为人类。吉顿等人。因此,研究了癫痫患者手术切除脑组织切片中第 2/3 层锥体神经元的树突生理学。双体细胞树突记录揭示了这些神经元树突中以前未知的动作电位类别,这使得它们的活动比以前想象的要复杂得多。这些动作电位允许单个神经元解决神经科学中两个长期存在的计算问题,这些问题被认为需要多层神经网络。科学,这个问题 p。83 树突动作电位扩展了人类神经元可用的计算范围。树突的活性电特性塑造了神经元的输入和输出,是大脑功能的基础。然而,我们对活性树突的了解几乎完全来自对啮齿动物的研究。在这项工作中,我们研究了离体人类大脑皮层的第 2 层和第 3 层 (L2/3) 锥体神经元的树突。在这些神经元中,我们发现了一类钙介导的树突动作电位 (dCaAPs),其波形和对神经元输出的影响以前从未被描述过。与典型的全有或全无动作电位相比,dCaAPs 被分级;它们的振幅对于阈值水平的刺激是最大的,但对于更强的刺激会减弱。
更新日期:2020-01-02
down
wechat
bug