当前位置: X-MOL 学术IEEE Sens. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Core-Shell Junctionless Nanotube Tunnel Field Effect Transistor: Design and Sensitivity Analysis for Biosensing Application
IEEE Sensors Journal ( IF 4.3 ) Pub Date : 2020-01-15 , DOI: 10.1109/jsen.2019.2944885
Shruti Shreya , Adnan Hamid Khan , Naveen Kumar , S. Intekhab Amin , Sunny Anand

In this paper, the structure of Core-Shell Junctionless Nanotube Tunnel Field Effect Transistor is proposed and investigated to minimize the fabrication steps and fabrication complexity of the device. The proposed junctionless device is implemented as a biosensor. The core-source metal and shell gate electrode are created using suitable work function. The p-type source region is created by using metal of work function 5.93eV and the shell gate is created by using a metal of work function 4.5eV, over the silicon surface. For biosensing application, a nano cavity is introduced between core-source metal and source region. The device is vertically aligned which provides stability to the biomolecules within the structure. For the investigation of biosensing application, three biomolecules of different dielectric constants, streptavidin (k = 2.1), 3-aminopropyltriethoxysilane (k = 3.57), and protein (k = 8), are used. The performance of the device for biosensing application is analyzed for both neutral and charged biomolecules. To examine the efficiency of the device, various characteristics are studied based on parametric variations, the effect of charged biomolecules, and sensitivity of the device and so on. The motivation behind our work is to design a device having optimum performance attributes without sacrificing the performance parameters of the device such as the ON-state current, subthreshold slope, ION/IOFF ratio, etc.

中文翻译:

核壳无结纳米管隧道场效应晶体管:生物传感应用的设计和灵敏度分析

在本文中,提出并研究了核壳无结纳米管隧道场效应晶体管的结构,以最大限度地减少器件的制造步骤和制造复杂性。所提出的无结装置是作为生物传感器实现的。使用合适的功函数创建核源金属和壳栅电极。p 型源区是通过使用功函数为 5.93eV 的金属创建的,而壳栅是通过使用功函数为 4.5eV 的金属在硅表面上创建的。对于生物传感应用,在核心源金属和源区之间引入了一个纳米腔。该装置垂直排列,为结构内的生物分子提供稳定性。对于生物传感应用的研究,三种不同介电常数的生物分子,链霉亲和素(k = 2.1),使用 3-氨基丙基三乙氧基硅烷 (k = 3.57) 和蛋白质 (k = 8)。针对中性和带电生物分子分析了用于生物传感应用的设备的性能。为了检查设备的效率,基于参数变化、带电生物分子的影响和设备的灵敏度等研究了各种特性。我们工作背后的动机是设计一种具有最佳性能属性的器件,而不会牺牲器件的性能参数,例如导通电流、亚阈值斜率、ION/IOFF 比等。根据参数变化、带电生物分子的影响和设备的灵敏度等研究各种特性。我们工作背后的动机是设计一种具有最佳性能属性的器件,而不会牺牲器件的性能参数,例如导通电流、亚阈值斜率、ION/IOFF 比等。根据参数变化、带电生物分子的影响和设备的灵敏度等研究各种特性。我们工作背后的动机是设计一种具有最佳性能属性的器件,而不会牺牲器件的性能参数,例如导通电流、亚阈值斜率、ION/IOFF 比等。
更新日期:2020-01-15
down
wechat
bug