当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2020/01/03 , DOI: 10.1039/c9se01264h
Shinjae Hwang 1, 2, 3, 4 , James L. Young 4, 5, 6 , Rachel Mow 4, 5, 6 , Anders B. Laursen 1, 2, 3, 4, 7 , Mengjun Li 1, 2, 3, 4 , Hongbin Yang 1, 2, 3, 4 , Philip E. Batson 2, 3, 4, 8 , Martha Greenblatt 1, 2, 3, 4 , Myles A. Steiner 4, 5, 6 , Daniel Friedman 4, 5, 6 , Todd G. Deutsch 4, 5, 6 , Eric Garfunkel 1, 2, 3, 4 , G. Charles Dismukes 1, 2, 3, 4, 7
Affiliation  

Durable performance and high efficiency in solar-driven water splitting are great challenges not yet co-achieved in photoelectrochemical (PEC) cells. Although photovoltaic cells made from III–V semiconductors can achieve high optical–electrical conversion efficiency, their functional integration with electrocatalysts and operational lifetime remain great challenges. Herein, an ultra-thin TiN layer was used as a diffusion barrier on a buried junction n+p-GaInP2 photocathode, to enable elevated temperatures for subsequent catalyst growth of Ni5P4 as nano-islands without damaging the GaInP2 junction. The resulting PEC half-cell showed negligible absorption loss, with saturated photocurrent density and H2 evolution equivalent to the benchmark photocathode decorated with PtRu catalysts. High corrosion-resistant Ni5P4/TiN layers showed undiminished photocathode operation over 120 h, exceeding previous benchmarks. Etching to remove electrodeposited copper, an introduced contaminant, restored full performance, demonstrating operational ruggedness. The TiN layer expands the synthesis conditions and protects against corrosion for stable operation of III–V PEC devices, while the Ni5P4 catalyst replaces costly and scarce noble metal catalysts.

中文翻译:

通过透明保护层的高效耐用的III–V半导体催化剂光阴极

太阳能驱动的水分解中的持久性能和高效率是光电化学(PEC)电池中尚未共同实现的巨大挑战。尽管由III–V半导体制成的光伏电池可以实现较高的光电转换效率,但其与电催化剂的功能集成和使用寿命仍然是巨大的挑战。在此,超薄的TiN层被用作掩埋结n + p-GaInP 2光电阴极上的扩散阻挡层,以使得能够升高温度以用于随后的作为纳米岛的Ni 5 P 4催化剂生长而不会损坏GaInP 2结。所得的PEC半电池的吸收损耗可忽略不计,饱和光电流密度和H2演化等效于用PtRu催化剂修饰的基准光电阴极。高耐蚀性的Ni 5 P 4 / TiN层在120小时内显示出不变的光阴极性能,超过了先前的基准。进行蚀刻以去除电沉积的铜(引入的污染物),恢复了完整的性能,证明了操作的坚固性。TiN层扩大了合成条件并保护了III–V PEC装置的稳定运行,而防腐蚀,而Ni 5 P 4催化剂替代了昂贵且稀缺的贵金属催化剂。
更新日期:2020-03-03
down
wechat
bug