当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and fabrication of a three-dimensional meso-sized robotic metamaterial with actively controlled properties†
Materials Horizons ( IF 12.2 ) Pub Date : 2019-09-03 , DOI: 10.1039/c9mh01368g
Chenyang Luo 1, 2, 3, 4 , Yuanping Song 4, 5, 6, 7 , Chang Zhao 1, 2, 3, 4 , Sridharan Thirumalai 1, 2, 3, 4 , Ian Ladner 1, 2, 3, 4 , Michael A. Cullinan 1, 2, 3, 4 , Jonathan B. Hopkins 4, 5, 6, 7
Affiliation  

Metamaterials can achieve naturally unobtainable properties according to how their microarchitectures are engineered. By incorporating robot-inspired actuators, sensors, and microprocessors within their microarchitectures, still more extreme properties and diverse combinations of properties can be achieved; and their properties can be actively tuned in real time according to uploaded control instructions. Despite the enormous potential of such robotic metamaterials, no three-dimensional designs have been demonstrated because such designs are difficult to make using existing fabrication approaches. Making them with constituent cells small enough to be considered a material instead of a collection of macro-sized robots is even more difficult. Here we demonstrate the first fabricated three-dimensional robotic metamaterial that achieves actively controlled properties. It's cells are meso-sized (5 mm), which make them the smallest robots to date among those intended to work together within a lattice for achieving any objective. We optimize the design's geometry and demonstrate its ability to tune its stiffness as desired using closed-loop control.

中文翻译:

具有主动控制特性的三维中型机器人超材料的设计和制造

根据超材料的微结构设计方式,超材料可以实现自然无法获得的特性。通过将受机器人启发的执行器,传感器和微处理器纳入其微体系结构,可以实现更极端的性能以及性能的多种组合;其属性可以根据上传的控制指令实时进行实时调整。尽管这种机器人超材料具有巨大的潜力,但尚未显示出三维设计,因为使用现有的制造方法很难进行此类设计。要使它们的构成单元足够小以使其被视为一种材料,而不是由一系列大型机器人组成,这将变得更加困难。在这里,我们演示了第一个制造的实现主动控制属性的三维机器人超材料。它的单元格是中等大小的(5 mm),这使它们成为迄今为止迄今为止最小的机器人,这些机器人旨在在晶格内协同工作以实现任何目标。我们优化设计的几何形状,并展示了使用闭环控制根据需要调整其刚度的能力。
更新日期:2020-01-04
down
wechat
bug