当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics†
Materials Horizons ( IF 12.2 ) Pub Date : 2019-08-22 , DOI: 10.1039/c9mh01211g
Hao Liu 1, 2, 3, 4, 5 , Moxiao Li 3, 4, 5, 6, 7 , Shaobao Liu 1, 2, 3, 4, 5 , Pengpeng Jia 1, 2, 3, 4, 5 , Xiaojin Guo 3, 4, 5, 6, 8 , Shangsheng Feng 1, 2, 3, 4, 5 , Tian Jian Lu 5, 9, 10, 11 , Huayuan Yang 5, 12, 13, 14 , Fei Li 1, 2, 3, 4, 5 , Feng Xu 1, 2, 3, 4, 5
Affiliation  

One major conundrum that impedes the development and application of emerging soft and stretchable electronics lies in the integration of electronic components with soft substrates for rational combination of various device functionalities into a single wearable state, since the rigid, nondeformable electronics tend to detach from the deformable substrate under mechanical loadings like stretch. Modulating the stiffness of soft materials in a spatially controllable manner provides a promising solution to this rigid–soft coupling challenge, by shielding the local strain of rigid components while maintaining the stretchable properties of the soft substrates. Hydrogels with superb biocompatibility and skin-like mechanical features are ideal candidates for interfacing the human body and electronic functionalities for cutting-edge wearable uses, where there exists a challenge of spatially modulating the stiffness of hydrogels to meet the application demands. Herein, we develop a facile and straightforward method to locally stiffen a hydrogel (with an increased Young's modulus of one order of magnitude) via an additional crosslinking strategy. The locally stiffened site undergoes minimal strain (down to 12%) and the untreated area remains stretchable under external deformations (100% strain), which presents excellent and tunable strain shielding capability to prevent detachment of the electronic components from the substrate under strain levels up to 150%. We further demonstrate a multifunctional health sensing device based on a component-integrated locally stiffened hydrogel and its satisfactory performance in monitoring temperature, UV exposure and EMG signals unveils its brilliant prospects for wearable healthcare applications.

中文翻译:

适用于柔软和可拉伸集成电子设备的水凝胶的空间调制刚度

阻碍新兴的软性和可拉伸电子产品发展和应用的一个主要难题在于将电子组件与软性基板集成在一起,以将各种设备功能合理地组合成一个可穿戴状态,因为刚性,不可变形的电子产品往往会与可变形的产品分离。机械负载(如拉伸)下的基材。通过在保持软性基材可拉伸特性的同时屏蔽刚性部件的局部应变,以空间可控的方式调节软性材料的刚度为解决这种刚性-软性耦合难题提供了一个有希望的解决方案。具有卓越的生物相容性和类似皮肤的机械特性的水凝胶是用于人体和电子功能的接口的理想选择,可用于尖端的可穿戴用途,在空间上调节水凝胶的刚度以满足应用需求方面存在挑战。本文中,我们开发了一种简便而直接的方法来局部硬化水凝胶(杨氏模量增加一个数量级)通过其他交联策略。局部变硬的部位承受的应变最小(低至12%),未经处理的区域在外部变形(应变为100%)下仍可拉伸,从而具有出色的可调应变屏蔽能力,可防止电子元件在应变水平升高时从基板上脱离。至150%。我们进一步展示了一种基于组件集成的局部硬化水凝胶的多功能健康感测设备,其在监测温度,紫外线暴露和EMG信号方面的令人满意的性能揭示了其在可穿戴医疗保健应用方面的辉煌前景。
更新日期:2020-01-04
down
wechat
bug