当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-shell SnO2@Fe2O3 hollow spheres as a high-performance anode material for lithium-ion batteries
CrystEngComm ( IF 3.1 ) Pub Date : 2020/01/03 , DOI: 10.1039/c9ce01621j
Zhipeng Cui 1, 2, 3, 4 , Meng Sun 1, 2, 3, 4 , Huanqing Liu 1, 2, 3, 4 , Sijie Li 1, 2, 3, 4 , Qingye Zhang 1, 2, 3, 4 , Chengpeng Yang 1, 2, 3, 4 , Guiju Liu 1, 2, 3, 4 , Junyu Zhong 1, 2, 3, 4 , Yiqian Wang 1, 2, 3, 4
Affiliation  

Construction of novel electrode materials is an effective way to enhance the electrochemical performance of lithium ion batteries (LIBs). In this work, double-shell SnO2@Fe2O3 hollow spheres are fabricated through a simple template method. It is revealed that the α-Fe2O3 nanorods are heterogeneously assembled on the surfaces of hollow SnO2 spheres. The double-shell SnO2@Fe2O3 hollow spheres, as an anode material for LIBs, demonstrate excellent lithium storage capacity and cycling stability. Their discharge specific capacity decreases to 464 mA h g−1 for the 46th cycle at a current density of 100 mA g−1, and then increases significantly to 1043 mA h g−1 up to the 190th cycle. Compared with SiO2@SnO2 (221 mA h g−1 after 190 cycles) and SnO2 (336 mA h g−1 after 190 cycles) electrodes, the better electrochemical performance of the SnO2@Fe2O3 electrode is ascribed to its hierarchical hollow urchin-like structure, the SnO2@Fe2O3 heterojunctions and the oxygen vacancies in the α-Fe2O3 nanorods. The sea urchin-like heterostructures dramatically inhibit the agglomeration and prevent the volume expansion during the cycling process. This work provides a novel way to construct a promising material with enhanced performance as an anode for LIBs.

中文翻译:

双壳SnO2 @ Fe2O3空心球作为锂离子电池的高性能负极材料

新型电极材料的构造是增强锂离子电池(LIB)电化学性能的有效方法。在这项工作中,通过简单的模板方法制造了双壳SnO 2 @Fe 2 O 3空心球。据透露,在的α-Fe 2 ö 3纳米棒被非均相组装中空SnO的表面上的2球体。作为LIBs的负极材料,双壳SnO 2 @Fe 2 O 3空心球表现出出色的锂存储能力和循环稳定性。它们的放电比容量降至464 mA hg -1在第46周期时,电流密度为100 mA g -1,然后显着增加到1043 mA hg -1,直到第190周期。与SiO 2 @SnO 2(190个循环后为221 mA hg -1)和SnO 2(190个循环后为336 mA hg -1)电极相比,SnO 2 @Fe 2 O 3电极具有更好的电化学性能。分级中空海胆状结构,所述的SnO 2 @Fe 2个ö 3个异质结和在氧空位的α-Fe 2 ö 3纳米棒。海胆状的异质结构显着抑制了团聚并阻止了循环过程中的体积膨胀。这项工作提供了一种新颖的方法来构建具有前途的材料,该材料具有增强的性能,可作为LIB的阳极。
更新日期:2020-02-17
down
wechat
bug