当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Assessment in predictability of visco-plastic self-consistent model with a minimum parameter approach: Numerical investigation of plastic deformation behavior of AZ31 magnesium alloy for various loading conditions
Materials Science and Engineering: A ( IF 4.652 ) Pub Date : 2020-01-03 , DOI: 10.1016/j.msea.2020.138912
Qiang Chen; Li Hu; Laixin Shi; Tao Zhou; Mingbo Yang; Jian Tu

By predicting the complex deformation mechanisms, visco-plastic self-consistent (VPSC) model has been found to be a useful tool for investigating plastic deformation behavior of magnesium alloy. The standard version of VPSC model involves a large number of adjustable parameters. Using independent arguments obtained from single tests, VPSC model with a minimum parameter approach immensely reduces the number of adjustable parameters, hence shows huge potential in simulating plastic deformation behavior of thin magnesium alloy sheet. The predictability of this new approach is thoroughly assessed in the present study. Although only the mechanical response of in-plane tension (IPT) in AZ31 magnesium alloy is applied to calibrated the corresponding material parameters, simulated results in terms of texture evolution using VPSC model with a minimum parameter approach show a relatively small difference by comparison with the predicted ones applying the standard version of VPSC model during IPT, in-plane compression (IPC), through-thickness compression (TTC), and plane strain compression (PSC), respectively. Furthermore, the corresponding activated deformation mechanisms during various deformation processes are further analyzed. With the exception of pyramidal <c+a> slip, the predicted activities of remaining deformation mechanisms are generally consistent with each other. This phenomenon is identified to be the root of minor difference in texture evolution. Moreover, the predicted activities in pyramidal <c+a> slip using VPSC model with a minimum parameter approach are relatively higher than the corresponding ones in the case with the standard version of VPSC model. However, these reported results are not beyond the maximum of published literature, and hence are acceptable when simulating various plastic deformation behavior of AZ31 magnesium alloy.

更新日期:2020-01-04

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug