当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large magnetotransport properties in mixed-dimensional heterostructures of 2D Dirac van der Waals materials
Carbon ( IF 10.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.carbon.2020.01.001
Rizwan Ur Rehman Sagar , Babar Shabbir , Syed Muhammad Hasnain , Nasir Mahmood , Muhammad Husnain Zeb , B.N. Shivananju , Taimur Ahmed , Irfan Qasim , Muhammad Imran Malik , Qasim Khan , Khurram Shehzad , Adnan Younis , Qiaoliang Bao , Min Zhang

Abstract Mixed dimensional van der Waals heterostructures (MD-vdWhs) open a huge potential to fabricate novel devices based on numerous metamaterials with superior magnetotransport properties. In conventional vdWhs, a variety of two dimensional (2D) layers has been stacked together to demonstrate vdWhs with phenomenal functionalities. However, fabricating 2D materials and their vdWhs over large areas with excellent magnetoresistance (MR) characteristics remains a major challenge. Graphene foam (GF), a 3D form of Dirac graphene continued to gather much attention for magnetotransport applications due to its gram-scale/cost effective production and better magnetoresistance properties. Also, many combinations could be possible with GF to create numerous MD-vdWhs with hybrid functionalities, potentially giving access to explore novel devices with unique hybrid properties. Herein, we demonstrate MD-vdWhs (2D+3D) of GF with molybdenum disulfide (MoS2) to investigate magnetotransport properties. Remarkably, MR of GF is increased from ∼130% to ∼210% at 5 K under an applied magnetic field of 5 T by fabricating its MD-vdWhs with MoS2. Our systematic investigations show that distinct magnetotransport properties in GF/MoS2 vdWhs are strongly correlated to the enhancement in spin-orbit-coupling of the MD-vdWhs. Together, these results present a promising path toward the fabrication of future sensing and memory devices.

中文翻译:

二维狄拉克范德华材料混合维异质结构中的大磁输运特性

摘要 混合维范德华异质结构 (MD-vdWhs) 为制造基于众多具有优异磁传输性能的超材料的新型器件开辟了巨大的潜力。在传统的 vdWhs 中,各种二维 (2D) 层堆叠在一起以展示具有非凡功能的 vdWhs。然而,在大面积上制造具有优异磁阻 (MR) 特性的 2D 材料及其 vdWhs 仍然是一个重大挑战。石墨烯泡沫 (GF) 是一种 3D 形式的狄拉克石墨烯,由于其克级/成本有效的生产和更好的磁阻特性,在磁传输应用中继续受到广泛关注。此外,GF 可以进行多种组合,以创建具有混合功能的众多 MD-vdWh,可能允许探索具有独特混合特性的新型设备。在此,我们展示了 GF 与二硫化钼 (MoS2) 的 MD-vdWhs (2D+3D) 以研究磁传输特性。值得注意的是,通过用 MoS2 制造 MD-vdWhs,在 5 T 的外加磁场下,GF 在 5 K 时的 MR 从~130% 增加到~210%。我们的系统研究表明,GF/MoS2 vdWhs 中不同的磁传输特性与 MD-vdWhs 的自旋轨道耦合增强密切相关。总之,这些结果为制造未来的传感和存储设备提供了一条有希望的途径。通过用 MoS2 制造 MD-vdWhs,在 5 T 的外加磁场下,GF 的 MR 从 5 K 时的~130% 增加到~210%。我们的系统研究表明,GF/MoS2 vdWhs 中不同的磁传输特性与 MD-vdWhs 的自旋轨道耦合增强密切相关。总之,这些结果为制造未来的传感和存储设备提供了一条有希望的途径。通过用 MoS2 制造 MD-vdWhs,在 5 T 的外加磁场下,GF 的 MR 从 5 K 时的~130% 增加到~210%。我们的系统研究表明,GF/MoS2 vdWhs 中不同的磁传输特性与 MD-vdWhs 的自旋轨道耦合增强密切相关。总之,这些结果为制造未来的传感和存储设备提供了一条有希望的途径。
更新日期:2020-04-01
down
wechat
bug