当前位置: X-MOL 学术ISME J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments.
The ISME Journal ( IF 10.8 ) Pub Date : 2020-01-02 , DOI: 10.1038/s41396-019-0574-x
Ang Hu 1, 2 , Jianjun Wang 3 , Hang Sun 4 , Bin Niu 1 , Guicai Si 5 , Jian Wang 6 , Chih-Fu Yeh 3 , Xinxin Zhu 4, 7 , Xiancai Lu 8 , Jizhong Zhou 9, 10, 11 , Yongping Yang 4 , Minglei Ren 3 , Yilun Hu 1 , Hailiang Dong 12, 13 , Gengxin Zhang 1
Affiliation  

Although biodiversity and ecosystem functions are strongly shaped by contemporary environments, such as climate and local biotic and abiotic attributes, relatively little is known about how they depend on long-term geological processes. Here, along a 3000-m elevational gradient with tectonic faults on the Tibetan Plateau (that is, Galongla Mountain in Medog County, China), we study the joint effects of geological and contemporary environments on biological communities, such as the diversity and community composition of plants and soil bacteria, and ecosystem functions. We find that these biological communities and ecosystem functions generally show consistent elevational breakpoints at 2000-2800 m, which coincide with Indus-Yalu suture zone fault and are similar to the elevational breakpoints of soil bacteria on another mountain range 1000 km away. Mean annual temperature, soil pH and moisture are the primary contemporary determinants of biodiversity and ecosystem functions, which support previous findings. However, compared with the models excluding geological processes, inclusion of geological effects, such as parent rock and weathering, increases 67.9 and 35.9% of the explained variations in plant and bacterial communities, respectively. Such inclusion increases 27.6% of the explained variations in ecosystem functions. The geological processes thus provide additional links to ecosystem properties, which are prominent but show divergent effects on biodiversity and ecosystem functions: parent rock and weathering exert considerable direct effects on biodiversity, whereas indirectly influence ecosystem functions via interactions with biodiversity and contemporary environments. Thus, the integration of geological processes with environmental gradients could enhance our understanding of biodiversity and, ultimately, ecosystem functioning across different climatic zones.
更新日期:2020-01-17
down
wechat
bug