当前位置: X-MOL 学术Math. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Persistent instability in a nonhomogeneous delay differential equation system of the Valsalva maneuver.
Mathematical Biosciences ( IF 1.9 ) Pub Date : 2019-11-27 , DOI: 10.1016/j.mbs.2019.108292
E Benjamin Randall 1 , Nicholas Z Randolph 1 , Mette S Olufsen 1
Affiliation  

Delay differential equations are widely used in mathematical modeling to describe physical and biological systems, often inducing oscillatory behavior. In physiological systems, this instability may signify (i) an attempt to return to homeostasis or (ii) system dysfunction. In this study, we analyze a nonlinear, nonautonomous, nonhomogeneous open-loop neurological control model describing the autonomic nervous system response to the Valsalva maneuver (VM). We reduce this model from 5 to 2 states (predicting sympathetic tone and heart rate) and categorize the stability properties of the reduced model using a two-parameter bifurcation analysis of the sympathetic delay (Ds) and time-scale (τs). Stability regions in the Dsτs-plane for this nonhomogeneous system and its homogeneous analog are classified numerically and analytically, identifying transcritical and Hopf bifurcations. Results show that the Hopf bifurcation remains for both the homogeneous and nonhomogeneous systems, while the nonhomogeneous system stabilizes the transition at the transcritical bifurcation. This analysis was compared with results from blood pressure and heart rate data from three subjects performing the VM: a control subject exhibiting sink behavior, a control subject exhibiting stable focus behavior, and a patient with postural orthostatic tachycardia syndrome (POTS) also exhibiting stable focus behavior. Results suggest that instability caused from overactive sympathetic signaling may result in autonomic dysfunction.

中文翻译:

Valsalva动作的非齐次时滞微分方程系统的持续不稳定性。

时滞微分方程广泛用于数学建模中,以描述物理和生物系统,通常会引起振荡行为。在生理系统中,这种不稳定性可能表示(i)试图恢复体内平衡或(ii)系统功能障碍。在这项研究中,我们分析了描述自主神经系统对Valsalva动作(VM)的反应的非线性,非自治,非均匀开环神经控制模型。我们将该模型从5种状态减少到2种状态(预测交感神经张力和心率),并使用交感延迟(Ds)和时间尺度(τs)的两参数分叉分析对简化模型的稳定性进行分类。对于该非均匀系统及其均匀类似物,在Dsτs平面上的稳定性区域在数值和分析上都进行了分类,识别跨临界和Hopf分叉。结果表明,均质和非均质系统的Hopf分叉都保持不变,而非均质系统则稳定了跨临界分叉处的过渡。将该分析结果与来自执行VM的三个受试者的血压和心率数据的结果进行了比较:一个受试者表现出下沉行为,一个对照组表现出稳定的焦点行为,以及一个体位性立位性心动过速综合征(POTS)的病人也表现出稳定的焦点行为。结果表明,由过度活跃的交感神经信号引起的不稳定性可能导致植物神经功能障碍。非均匀系统则稳定了跨临界分叉处的过渡。将该分析结果与来自执行VM的三个受试者的血压和心率数据的结果进行了比较:一个受试者表现出下沉行为,一个对照组表现出稳定的焦点行为,以及一个体位性立位心动过速综合征(POTS)的病人也表现出稳定的焦点行为。结果表明,由过度活跃的交感神经信号引起的不稳定性可能导致植物神经功能障碍。非均匀系统则稳定了跨临界分叉处的过渡。将该分析结果与来自执行VM的三个受试者的血压和心率数据的结果进行了比较:一个受试者表现出下沉行为,一个对照组表现出稳定的焦点行为,以及一个体位性立位心动过速综合征(POTS)的病人也表现出稳定的焦点行为。结果表明,由过度活跃的交感神经信号引起的不稳定性可能导致植物神经功能障碍。体位性体位性心动过速综合征(POTS)的患者也表现出稳定的聚焦行为。结果表明,由过度活跃的交感神经信号引起的不稳定性可能导致植物神经功能障碍。体位性体位性心动过速综合征(POTS)的患者也表现出稳定的聚焦行为。结果表明,由过度活跃的交感神经信号引起的不稳定性可能导致植物神经功能障碍。
更新日期:2019-11-01
down
wechat
bug