当前位置: X-MOL 学术Theor. Popul. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing population stability with combined adaptive limiter control and finding the optimal harvesting-restocking balance.
Theoretical Population Biology ( IF 1.2 ) Pub Date : 2019-09-30 , DOI: 10.1016/j.tpb.2019.09.012
Juan Segura 1 , Frank M Hilker 2 , Daniel Franco 3
Affiliation  

Fluctuations in population size may have negative consequences (e.g., an increased risk of extinction or the occurrence of repeated outbreaks), and many management strategies are aimed at avoiding them by either only restocking or only harvesting the population. Two of these strategies are adaptive limiter control (ALC) and adaptive threshold harvesting (ATH). With ALC the population is controlled by only restocking and with ATH by only harvesting. We propose the strategy of combined adaptive limiter control (CALC) as the combination of ALC and ATH and study the potential advantages of CALC over ALC and ATH. We consider two different population models, namely a stochastic overcompensatory model and a host-pathogen-predator model. For the first model, our results show that the combination of restocking and harvesting under CALC improves the constancy stability of the managed populations when the harvesting and restocking intensities are high enough. Otherwise the effect is marginal or in rare cases negative. For the second model, we show that combining harvesting with restocking reduces the outbreak risk only if the harvesting intensity is low. For medium harvesting intensities the effect is marginal and for high harvesting intensities the risk of outbreaks is increased. In addition, we study the optimal harvesting-restocking balance by considering a proxy of the benefit obtained in terms of the reduction in the outbreak risk and the harvesting and restocking costs.

中文翻译:

通过组合的自适应限制器控制来增强种群稳定性,并找到最佳的收获-放养平衡。

人口规模的波动可能会带来负面影响(例如,灭绝的风险增加或反复爆发的发生),许多管理策略旨在通过仅补充种群或仅收获种群来避免这种情况。这些策略中的两种是自适应限制器控制(ALC)和自适应阈值收集(ATH)。使用ALC,只能通过补给来控制种群,而使用ATH只能通过收获来控制种群。我们提出了组合自适应限制器控制(CALC)作为ALC和ATH的组合策略,并研究了CALC相对于ALC和ATH的潜在优势。我们考虑两种不同的种群模型,即随机过度补偿模型和宿主-病原体-捕食者模型。对于第一个模型,我们的研究结果表明,当采摘和补给强度足够高时,在CALC下进行补给和收获的结合可以提高管理种群的稳定性。否则,影响很小或在极少数情况下是负面的。对于第二个模型,我们表明只有在收割强度较低的情况下,将收割与补货相结合才能降低爆发风险。对于中等强度的采收,其影响很小,而对于较高强度的采收,暴发的风险增加。此外,我们通过考虑暴发风险降低以及收割和放养成本方面获得的收益的替代指标,研究了最佳的收割与放养平衡。否则,影响很小或在极少数情况下是负面的。对于第二个模型,我们表明只有在收割强度较低的情况下,将收割与补货相结合才能降低爆发风险。对于中等强度的采收,其影响很小,而对于较高强度的采收,暴发的风险增加。此外,我们通过考虑暴发风险降低以及收割和放养成本方面获得的收益的替代指标,研究了最佳的收割与放养平衡。否则,影响很小或在极少数情况下是负面的。对于第二个模型,我们表明只有在收割强度低的情况下,将收割与补给相结合才能降低爆发风险。对于中等强度的采收,其影响很小,而对于较高强度的采收,暴发的风险增加。此外,我们通过考虑暴发风险降低以及收割和放养成本方面获得的收益的替代指标,研究了最佳的收割与放养平衡。
更新日期:2019-11-01
down
wechat
bug