当前位置: X-MOL 学术Biofabrication › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Customizable, engineered substrates for rapid screening of cellular cues.
Biofabrication ( IF 8.2 ) Pub Date : 2020-02-07 , DOI: 10.1088/1758-5090/ab5d3f
Eline Huethorst 1 , Marie Fa Cutiongco , Fraser A Campbell , Anwer Saeed , Rachel Love , Paul M Reynolds , Matthew J Dalby , Nikolaj Gadegaard
Affiliation  

Biophysical cues robustly direct cell responses and are thus important tools for in vitro and translational biomedical applications. High throughput platforms exploring substrates with varying physical properties are therefore valuable. However, currently existing platforms are limited in throughput, the biomaterials used, the capability to segregate between different cues and the assessment of dynamic responses. Here we present a multiwell array (3 × 8) made of a substrate engineered to present topography or rigidity cues welded to a bottomless plate with a 96-well format. Both the patterns on the engineered substrate and the well plate format can be easily customized, permitting systematic and efficient screening of biophysical cues. To demonstrate the broad range of possible biophysical cues examinable, we designed and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and osteoblast function. Using the multiwell array, we were able to measure different cell functionalities using analytical modalities such as live microscopy, qPCR and immunofluorescence. We observed that grooves (5 μm in size) induced less variation in contractile function of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm height, 100 nm diameter and 300 nm pitch enhanced matrix deposition, chondrogenic gene expression and chondrogenic maintenance. High aspect ratio pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in early stages of bone development improved osteogenic gene expression compared to stiff plastic. We envisage that our bespoke multiwell array will accelerate the discovery of relevant biophysical cues through improved throughput and variety.

中文翻译:

可定制的工程化底物,用于细胞信号的快速筛选。

生物物理提示强烈指导细胞反应,因此是体外和翻译生物医学应用的重要工具。因此,探索具有不同物理性质的基材的高通量平台非常有价值。但是,当前现有的平台在吞吐量,使用的生物材料,在不同提示之间进行分离的能力以及动态响应的评估方面受到限制。在这里,我们介绍了一种多孔基板(3×8),该基板由经过工程设计的基板制成,可以呈现焊接到96孔格式的无底板上的形貌或刚度提示。可以轻松定制工程化基板上的图案和孔板格式,从而可以对生物物理线索进行系统有效的筛选。为了展示可检验的多种可能的生物物理线索,我们设计并测试了三个多孔阵列,以影响心肌细胞,软骨细胞和成骨细胞的功能。使用多孔阵列,我们能够使用诸如实时显微镜,qPCR和免疫荧光之类的分析方法来测量不同的细胞功能。我们观察到,凹槽(大小为5μm)引起的心肌收缩功能变化较小。与无图案的塑料相比,具有127 nm高,100 nm直径和300 nm间距的纳米柱增强了基质沉积,软骨生成基因表达和软骨生成维持能力。与硬质塑料相比,具有16 kPa弹性剪切模量的高纵横比支柱可以模仿在骨骼发育早期发现的基质,从而改善了成骨基因的表达。
更新日期:2020-02-07
down
wechat
bug