当前位置: X-MOL 学术WIREs Nanomed. Nanobiotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures.
WIREs Nanomedicine and Nanobiotechnology ( IF 6.9 ) Pub Date : 2019-02-11 , DOI: 10.1002/wnan.1553
Rachel Andorfer 1, 2 , Joshua D Alper 2, 3, 4
Affiliation  

As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.

中文翻译:

从孤立的结构到连续的网络:基于细胞骨架的运动工程生物微观结构的分类。

随着小规模技术的发展,移动工程微结构在药物输送,生物医学和芯片实验室设备中变得有用。但是,传统的工程方法和材料对于小规模的应用可能效率低下或在功能上不足。为了启发和解决方案,研究人员越来越多地转向细胞骨架的生物学,包括微管,肌动蛋白丝,驱动蛋白,动力蛋白,肌球蛋白和相关蛋白。它们是工程结构,其组成部分从完全是生物学的到完全是生物学的合成模仿,范围从各向同性的连续网络到单个孤立的结构。运动性生物微结构的起源可追溯到用于研究细胞骨架的检测方法的发展,直至如今可用的一系列结构。我们基于四个类别(完全生物,模块化,混合和合成)以及三种规模(网络,集群和隔离结构)定义了12种运动生物微观结构。我们重点介绍了一些关键示例,独特的功能以及每种微结构类型的潜在应用,并总结了能够对其进行工程设计的定量模型。通过以这种方式对活动性生物微观结构的多样性进行分类,我们旨在建立一个框架来对这些结构进行分类,定义当前研究的空白,并激发思路以填补这些空白。本文归类于:纳米技术生物学方法>
更新日期:2019-11-01
down
wechat
bug