当前位置: X-MOL 学术Bioinspir. Biomim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Algorithmic-driven design of shark denticle bioinspired structures for superior aerodynamic properties.
Bioinspiration & Biomimetics ( IF 3.1 ) Pub Date : 2020-01-13 , DOI: 10.1088/1748-3190/ab5c85
Joshua Ott 1 , Manuel Lazalde , Grace X Gu
Affiliation  

All engineering systems that move through fluids can benefit from a reduction in opposing forces, or drag. As a result, there is a significant focus on finding new ways to improve the lift-to-drag ratios of systems that move through fluids. Nature has proven to be an extremely beneficial source of inspiration to overcome current technical endeavors. Shark skin, with its low-drag riblet structure, is a prime example of an evolutionary design that has inspired new implementations of drag reducing technologies. Previously, it has been shown that denticles have drag reducing properties when applied to airfoils and other surfaces moving through fluids. Researchers have been able to mimic the structure of shark skin, but minimal work has been done in terms of optimizing the design of the denticles due to the large number of parameters involved. In this work, we use a combination of computational fluid dynamics simulations and optimization methods to optimize the size and shape of shark skin denticles in order to decrease drag. Results show that by changing the size, shape, and orientation of the denticles, the boundary layer can be altered, and thereby reduce drag. This research demonstrates that denticles play a similar role as vortex generators in energizing the boundary layer to decrease drag. These mechanisms, along with the fundamental knowledge gained through the study of these drag reducing structures can be applied to a vast number of fields including aeronautical, oceanic, and automotive engineering.

中文翻译:

鲨鱼齿生物启发结构的算法驱动设计,具有出色的空气动力学特性。

穿过流体的所有工程系统都可以受益于减小反作用力或阻力。因此,人们将重点放在寻找新方法上,以提高通过流体的系统的升阻比。事实证明,大自然是克服当前技术难题的极其有益的灵感来源。鲨鱼皮具有低阻力的肋骨结构,是进化设计的典范,它启发了减阻技术的新实现。以前,已经表明,当将细齿应用于翼型和其他通过流体的表面时,它们具有减阻性能。研究人员已经能够模拟鲨鱼皮的结构,但是由于涉及大量参数,因此在优化齿孔设计方面所做的工作很少。在这项工作中,我们结合使用了计算流体动力学模拟和优化方法来优化鲨鱼皮齿的大小和形状,以减少阻力。结果表明,通过改变细粒的大小,形状和方向,可以改变边界层,从而减少阻力。这项研究表明,在激励边界层以减少阻力时,齿状体与涡流发生器起着相似的作用。这些机制以及通过研究这些减阻结构而获得的基础知识可以应用于航空,海洋和汽车工程等众多领域。结果表明,通过改变细粒的大小,形状和方向,可以改变边界层,从而减少阻力。这项研究表明,在激励边界层以减少阻力时,齿状体与涡流发生器起着相似的作用。这些机制以及通过研究这些减阻结构而获得的基础知识可以应用于航空,海洋和汽车工程等众多领域。结果表明,通过改变细粒的大小,形状和方向,可以改变边界层,从而减少阻力。这项研究表明,在激励边界层以减少阻力时,齿状体与涡流发生器起着相似的作用。这些机制以及通过研究这些减阻结构而获得的基础知识可以应用于航空,海洋和汽车工程等众多领域。
更新日期:2019-11-01
down
wechat
bug