当前位置: X-MOL 学术Cell. Mol. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CRISPR System: A High-throughput Toolbox for Research and Treatment of Parkinson's Disease.
Cellular and Molecular Neurobiology ( IF 3.6 ) Pub Date : 2019-11-26 , DOI: 10.1007/s10571-019-00761-w
Fatemeh Safari 1, 2 , Gholamreza Hatam 3 , Abbas Behzad Behbahani 2 , Vahid Rezaei 4 , Mazyar Barekati-Mowahed 5 , Peyman Petramfar 6 , Farzaneh Khademi 7
Affiliation  

In recent years, the innovation of gene-editing tools such as the CRISPR/Cas9 system improves the translational gap of treatments mediated by gene therapy. The privileges of CRISPR/Cas9 such as working in living cells and organs candidate this technology for using in research and treatment of the central nervous system (CNS) disorders. Parkinson's disease (PD) is a common, debilitating, neurodegenerative disorder which occurs due to loss of dopaminergic neurons and is associated with progressive motor dysfunction. Knowledge about the pathophysiological basis of PD has altered the classification system of PD, which manifests in familial and sporadic forms. The first genetic linkage studies in PD demonstrated the involvement of Synuclein alpha (SNCA) mutations and SNCA genomic duplications in the pathogenesis of PD familial forms. Subsequent studies have also insinuated mutations in leucine repeat kinase-2 (LRRK2), Parkin, PTEN-induced putative kinase 1 (PINK1), as well as DJ-1 causing familial forms of PD. This review will attempt to discuss the structure, function, and development in genome editing mediated by CRISP/Cas9 system. Further, it describes the genes involved in the pathogenesis of PD and the pertinent alterations to them. We will pursue this line by delineating the PD linkage studies in which CRISPR system was employed. Finally, we will discuss the pros and cons of CRISPR employment vis-à-vis the process of genome editing in PD patients' iPSCs.

中文翻译:

CRISPR系统:用于研究和治疗帕金森氏病的高通量工具箱。

近年来,CRISPR / Cas9系统等基因编辑工具的创新改善了基因治疗介导的治疗方法的翻译差距。CRISPR / Cas9的特权(例如在活细胞和器官中工作)使该技术可用于研究和治疗中枢神经系统(CNS)疾病。帕金森氏病(PD)是一种常见的使人衰弱的神经退行性疾病,由于多巴胺能神经元的丧失而发生,并与进行性运动功能障碍有关。关于PD的病理生理基础的知识改变了PD的分类系统,其以家族和散发形式表现。PD的第一个遗传连锁研究证明了Synucleinα(SNCA)突变和SNCA基因组重复与PD家族型发病机制有关。随后的研究也暗示了亮氨酸重复激酶2(LRRK2),帕金,PTEN诱导的假定激酶1(PINK1)以及DJ-1引起家族性PD的突变。这篇综述将试图讨论由CRISP / Cas9系统介导的基因组编辑的结构,功能和发展。此外,它描述了PD发病机理中涉及的基因及其相关变化。我们将通过描述使用CRISPR系统的PD连锁研究来追踪这条线。最后,相对于PD患者iPSC中基因组编辑的过程,我们将讨论CRISPR的优缺点。功能,以及由CRISP / Cas9系统介导的基因组编辑开发。此外,它描述了PD发病机理中涉及的基因及其相关变化。我们将通过描述使用CRISPR系统的PD连锁研究来追踪这条线。最后,相对于PD患者iPSC中基因组编辑的过程,我们将讨论CRISPR使用的优缺点。功能,以及由CRISP / Cas9系统介导的基因组编辑开发。此外,它描述了PD发病机理中涉及的基因及其相关变化。我们将通过描述使用CRISPR系统的PD连锁研究来追踪这条线。最后,相对于PD患者iPSC中基因组编辑的过程,我们将讨论CRISPR的优缺点。
更新日期:2020-04-20
down
wechat
bug