当前位置: X-MOL 学术Curr. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state.
Current Genetics ( IF 1.8 ) Pub Date : 2019-11-22 , DOI: 10.1007/s00294-019-01045-y
Ritu Gupta 1 , Sunil Laxman 1
Affiliation  

Cells must appropriately sense available nutrients and accordingly regulate their metabolic outputs, to survive. This mini-review considers the idea that conserved chemical modifications of wobble (U34) position tRNA uridines enable cells to sense nutrients and regulate their metabolic state. tRNA wobble uridines are chemically modified at the 2- and 5- positions, with a thiol (s2), and (commonly) a methoxycarbonylmethyl (mcm5) modification, respectively. These modifications reflect sulfur amino acid (methionine and cysteine) availability. The loss of these modifications has minor translation defects. However, they result in striking phenotypes consistent with an altered metabolic state. Using yeast, we recently discovered that the s2 modification regulates overall carbon and nitrogen metabolism, dependent on methionine availability. The loss of this modification results in rewired carbon (glucose) metabolism. Cells have reduced carbon flux towards the pentose phosphate pathway and instead increased flux towards storage carbohydrates-primarily trehalose, along with reduced nucleotide synthesis, and perceived amino acid starvation signatures. Remarkably, this metabolic rewiring in the s2U mutants is caused by mechanisms leading to intracellular phosphate limitation. Thus this U34 tRNA modification responds to methionine availability and integratively regulates carbon and nitrogen homeostasis, wiring cells to a 'growth' state. We interpret the importance of U34 modifications in the context of metabolic sensing and anabolism, emphasizing their intimate coupling to methionine metabolism.

中文翻译:

tRNA摆动尿苷修饰作为氨基酸传感器和细胞代谢状态的调节剂。

细胞必须适当地感知可用的营养并相应地调节其代谢输出才能存活。这份小型综述认为,摆动(U34)位置tRNA尿苷的保守化学修饰能使细胞感知营养并调节其代谢状态。tRNA摆动尿苷分别在2和5位被化学修饰,分别被巯基(s2)和(通常)甲氧羰基甲基(mcm5)修饰。这些修饰反映了硫氨基酸(蛋氨酸和半胱氨酸)的可用性。这些修饰的丢失具有较小的翻译缺陷。然而,它们导致与改变的代谢状态一致的惊人表型。使用酵母,我们最近发现s2修饰可调节总碳和氮代谢,具体取决于蛋氨酸的可用性。这种修饰的丧失导致重新连接的碳(葡萄糖)代谢。细胞降低了通向戊糖磷酸途径的碳通量,而提高了通向存储碳水化合物(主要是海藻糖)的通量,同时核苷酸合成减少,并且氨基酸饥饿感明显。值得注意的是,s2U突变体中这种代谢重新连接是由导致细胞内磷酸盐限制的机制引起的。因此,这种U34 tRNA修饰响应于蛋氨酸的可用性,并整体调节碳和氮的动态平衡,使细胞处于“生长”状态。我们解释了U34修饰在代谢感测和合成代谢中的重要性,强调了它们与蛋氨酸代谢的紧密结合。细胞减少了通向戊糖磷酸途径的碳通量,而增加了通向存储碳水化合物(主要是海藻糖)的通量,同时核苷酸合成减少,并出现了氨基酸饥饿特征。值得注意的是,s2U突变体中这种代谢重新连接是由导致细胞内磷酸盐限制的机制引起的。因此,这种U34 tRNA修饰响应于蛋氨酸的可用性,并整体调节碳和氮的动态平衡,使细胞处于“生长”状态。我们解释了U34修饰在代谢感测和合成代谢中的重要性,强调了它们与蛋氨酸代谢的紧密结合。细胞减少了通向戊糖磷酸途径的碳通量,而增加了通向存储碳水化合物(主要是海藻糖)的通量,同时核苷酸合成减少,并出现了氨基酸饥饿特征。值得注意的是,s2U突变体中这种代谢重新连接是由导致细胞内磷酸盐限制的机制引起的。因此,这种U34 tRNA修饰响应于蛋氨酸的可用性,并整体调节碳和氮的动态平衡,使细胞处于“生长”状态。我们解释了U34修饰在代谢感测和合成代谢中的重要性,强调了它们与蛋氨酸代谢的紧密结合。和感觉到的氨基酸饥饿特征。值得注意的是,s2U突变体中这种代谢重新连接是由导致细胞内磷酸盐限制的机制引起的。因此,这种U34 tRNA修饰响应于蛋氨酸的可用性,并整体调节碳和氮的动态平衡,使细胞处于“生长”状态。我们解释了U34修饰在代谢感测和合成代谢中的重要性,强调了它们与蛋氨酸代谢的紧密结合。和感觉到的氨基酸饥饿特征。值得注意的是,s2U突变体中这种代谢重新连接是由导致细胞内磷酸盐限制的机制引起的。因此,这种U34 tRNA修饰响应于蛋氨酸的可用性,并整体调节碳和氮的动态平衡,使细胞处于“生长”状态。我们解释了U34修饰在代谢感测和合成代谢中的重要性,强调了它们与蛋氨酸代谢的紧密结合。
更新日期:2019-11-22
down
wechat
bug