当前位置: X-MOL 学术Theor. Appl. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissection of complex traits of tomato in the post-genome era.
Theoretical and Applied Genetics ( IF 4.4 ) Pub Date : 2019-11-19 , DOI: 10.1007/s00122-019-03478-y
Shuai Sun 1, 2 , Xiaotian Wang 1, 2 , Ketao Wang 1, 2 , Xia Cui 1, 2
Affiliation  

We present the main advances of dissection of complex traits in tomato by omics, the genes identified to control complex traits and the application of CRISPR/Cas9 in tomato breeding. Complex traits are believed to be under the control of multiple genes, each with different effects and interaction with environmental factors. Advance development of sequencing and molecular technologies has enabled the recognition of the genomic structure of most organisms and the identification of a nearly limitless number of markers that have made it to accelerate the speed of QTL identification and gene cloning. Meanwhile, multiomics have been used to identify the genetic variations among different tomato species, determine the expression profiles of genes in different tissues and at distinct developmental stages, and detect metabolites in different pathways and processes. The combination of these data facilitates to reveal mechanism underlying complex traits. Moreover, mutants generated by mutagens and genome editing provide relatively rich genetic variation for deciphering the complex traits and exploiting them in tomato breeding. In this article, we present the main advances of complex trait dissection in tomato by omics since the release of the tomato genome sequence in 2012. We provide further insight into some tomato complex traits because of the causal genetic variations discovered so far and explore the utilization of CRISPR/Cas9 for the modification of tomato complex traits.

中文翻译:

后基因组时代番茄复杂性状剖析[J].

我们介绍了通过组学分析番茄复杂性状的主要进展、鉴定的控制复杂性状的基因以及 CRISPR/Cas9 在番茄育种中的应用。复杂性状被认为受多个基因的控制,每个基因都具有不同的影响和与环境因素的相互作用。测序和分子技术的进步使大多数生物体的基因组结构得以识别,并能够识别出几乎无限多的标记,从而加快了QTL鉴定和基因克隆的速度。同时,多组学已被用于识别不同番茄品种之间的遗传变异,确定不同组织和不同发育阶段的基因表达谱,并检测不同途径和过程中的代谢物。这些数据的组合有助于揭示复杂性状背后的机制。此外,诱变剂和基因组编辑产生的突变体为破译复杂性状并在番茄育种中利用它们提供了相对丰富的遗传变异。在本文中,我们介绍了自 2012 年番茄基因组序列发布以来,通过组学分析番茄复杂性状的主要进展。由于迄今为止发现的因果遗传变异,我们进一步深入了解了一些番茄复杂性状,并探讨了利用CRISPR/Cas9 用于修饰番茄复合性状。通过诱变剂和基因组编辑产生的突变体为破译复杂性状并在番茄育种中利用它们提供了相对丰富的遗传变异。在本文中,我们介绍了自 2012 年番茄基因组序列发布以来,通过组学分析番茄复杂性状的主要进展。由于迄今为止发现的因果遗传变异,我们进一步深入了解了一些番茄复杂性状,并探讨了利用CRISPR/Cas9 用于修饰番茄复合性状。通过诱变剂和基因组编辑产生的突变体为破译复杂性状并在番茄育种中利用它们提供了相对丰富的遗传变异。在本文中,我们介绍了自 2012 年番茄基因组序列发布以来,通过组学分析番茄复杂性状的主要进展。由于迄今为止发现的因果遗传变异,我们进一步深入了解了一些番茄复杂性状,并探讨了利用CRISPR/Cas9 用于修饰番茄复合性状。
更新日期:2019-11-01
down
wechat
bug