当前位置: X-MOL 学术Cel. Mol. Bioeng. › 论文详情
Characterization of 3D Printed Stretching Devices for Imaging Force Transmission in Live-Cells.
Cellular and Molecular Bioengineering ( IF 2.477 ) Pub Date : 2019-11-14 , DOI: 10.1007/s12195-019-00579-y
Carl R Mayer,Paul T Arsenovic,Kranthidhar Bathula,Kevin B Denis,Daniel E Conway

Introduction Cell stretch is a method which can rapidly apply mechanical force through cell-matrix and cell-cell adhesions and can be utilized to better understand underlying biophysical questions related to intracellular force transmission and mechanotransduction. Methods 3D printable stretching devices suitable for live-cell fluorescent imaging were designed using finite element modeling and validated experimentally. These devices were then used along with FRET based nesprin-2G force sensitive biosensors as well as live cell fluorescent staining to understand how the nucleus responds to externally applied mechanical force in cells with both intact LINC (linker of nucleoskeleton and cytoskeleton) complex and cells with the LINC complex disrupted using expression of dominant negative KASH protein. Results The devices were shown to provide a larger strain ranges (300% uniaxial and 60% biaxial) than currently available commercial or academic designs we are aware of. Under uniaxial deformation, the deformation of the nucleus of NIH 3T3 cells per unit of imposed cell strain was shown to be approximately 50% higher in control cells compared to cells with a disrupted LINC complex. Under biaxial deformation, MDCK II cells showed permanent changes in the nuclear morphology as well as actin organization upon unloading, indicating that failure, plastic deformation, or remodeling of the cytoskeleton is occurring in response to the applied stretch. Conclusion Development and open distribution of low-cost, 3D-printable uniaxial and biaxial cell stretching devices compatible with live-cell fluorescent imaging allows a wider range of researchers to investigate mechanical influences on biological questions with only a minimal investment of resources.
更新日期:2019-11-01

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug