当前位置: X-MOL 学术Tissue Eng. Part C Method › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust and Precise Wounding and Analysis of Engineered Contractile Tissues.
Tissue Engineering, Part C: Methods ( IF 2.7 ) Pub Date : 2019-09-20 , DOI: 10.1089/ten.tec.2019.0123
Sarah J Dubois 1 , Nikita Kalashnikov 1 , Christopher Moraes 1, 2, 3
Affiliation  

Fibrous tissue gap closure is a critically important process initiated in response to traumatic injury. Recent three-dimensional (3D) bioengineered models capture cellular details of this process, including wound retraction and closure, but have high failure rates, are labor-intensive, and require considerable expertise to develop and implement with tools that are typically not available in standard wet laboratories. Here, we develop a simple and effective 3D-printed wounding platform to reliably create and puncture arrays of prestressed tissues and monitor subsequent wound dynamics. We demonstrate the ability to create a range of wound sizes in a contractile collagen/fibroblast tissue, within 125 μm of the desired target location, with high degrees of circularity. Wounds exhibit an initial expansion due to tissue prestress, and sufficiently small wounds close completely within 24 h, while larger wounds initially closed much more rapidly, but did not complete the closure process. Simulating the dynamics of tissue retraction with a viscoplastic finite element model indicates a temporary elevation of circumferential stresses around the wound edge. Finally, to determine whether active wounding and retraction of the tissue significantly affect closure rates, we compared active puncture of prestressed tissue with passive removal of a structure that prevents closure, and found that active wounding and retraction substantially accelerated wound closure when compared with the passive case. Taken together, our findings support the role of active tissue mechanics in wound closure arising from an initial retraction of the tissue. More broadly, these findings demonstrate the utility of the platform and methodology developed here in further understanding the mechanobiological basis for wound closure. Impact Statement In vitro models to study wound formation and closure in prestressed tissue are typically challenging to implement. This work provides an easily accessible approach to produce and analyze wounds in arrays of contractile tissues that recapitulate critical features of wound retraction and closure in animal models. The specific modeling and experiments results presented here suggest that mechanobiology effects arising from wound retraction in viscoplastic extracellular matrices could play an important role in driving wound closure.

中文翻译:

工程收缩组织的稳健而精确的伤口处理和分析。

纤维组织间隙的闭合是响应创伤性损伤而启动的至关重要的过程。最近的三维(3D)生物工程模型捕获了该过程的细胞细节,包括伤口的回缩和闭合,但是失败率高,劳动强度大,并且需要大量的专业知识来开发和实施通常无法通过标准工具获得的工具湿实验室。在这里,我们开发了一个简单而有效的3D打印伤口平台,以可靠地创建和刺穿预应力组织的阵列,并监视随后的伤口动态。我们证明了在高度收缩的胶原蛋白/成纤维细胞组织中,在所需目标位置的125μm以内产生一定范围伤口大小的能力。伤口由于组织预应力而出现初始膨胀,并且足够小的伤口在24小时内完全闭合,而较大的伤口最初闭合更快,但是没有完成闭合过程。用粘塑性有限元模型模拟组织收缩的动力学表明伤口边缘周围的周向应力暂时升高。最后,为了确定组织的主动伤口和回缩是否显着影响闭合率,我们比较了预应力组织的主动穿刺和被动切除防止闭合的结构,发现与被动相比,主动伤口和缩回显着加速了伤口闭合案件。综上所述,我们的发现支持了主动组织力学在组织最初收缩所引起的伤口闭合中的作用。更广泛地,这些发现证明了这里开发的平台和方法在进一步了解伤口闭合的力学生物学基础上的实用性。影响陈述研究预应力组织中伤口形成和闭合的体外模型通常难以实施。这项工作提供了一种易于产生的方法来生产和分析一系列可收缩组织中的伤口,这些伤口概括了动物模型中伤口回缩和闭合的关键特征。此处提供的具体建模和实验结果表明,在粘塑性细胞外基质中由伤口回缩引起的力学生物学效应可能在驱动伤口闭合中起重要作用。影响陈述研究预应力组织中伤口形成和闭合的体外模型通常难以实施。这项工作提供了一种易于产生的方法来生产和分析一系列可收缩组织中的伤口,这些伤口概括了动物模型中伤口回缩和闭合的关键特征。此处提供的具体建模和实验结果表明,在粘塑性细胞外基质中由伤口回缩引起的力学生物学效应可能在驱动伤口闭合中起重要作用。影响陈述研究预应力组织中伤口形成和闭合的体外模型通常很难实施。这项工作提供了一种易于产生的方法来生产和分析一系列可收缩组织中的伤口,这些伤口概括了动物模型中伤口回缩和闭合的关键特征。此处提供的具体建模和实验结果表明,在粘塑性细胞外基质中由伤口回缩引起的力学生物学效应可能在驱动伤口闭合中起重要作用。
更新日期:2019-11-01
down
wechat
bug