当前位置: X-MOL 学术Brief. Funct. Genomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genome organization via loop extrusion, insights from polymer physics models.
Briefings in Functional Genomics ( IF 2.5 ) Pub Date : 2019-11-08 , DOI: 10.1093/bfgp/elz023
Surya K Ghosh 1, 2 , Daniel Jost 1, 3
Affiliation  

Understanding how genomes fold and organize is one of the main challenges in modern biology. Recent high-throughput techniques like Hi-C, in combination with cutting-edge polymer physics models, have provided access to precise information on 3D chromosome folding to decipher the mechanisms driving such multi-scale organization. In particular, structural maintenance of chromosome (SMC) proteins play an important role in the local structuration of chromatin, putatively via a loop extrusion process. Here, we review the different polymer physics models that investigate the role of SMCs in the formation of topologically associated domains (TADs) during interphase via the formation of dynamic loops. We describe the main physical ingredients, compare them and discuss their relevance against experimental observations.

中文翻译:

通过环挤出进行基因组组织,从高分子物理模型中获得见解。

了解基因组如何折叠和组织是现代生物学的主要挑战之一。最近的高通量技术(例如Hi-C)与尖端的聚合物物理模型相结合,已经提供了有关3D染色体折叠的精确信息的途径,以破译驱动这种多尺度组织的机制。特别是,染色体(SMC)蛋白的结构维持在染色质的局部结构中扮演着重要角色,这可能是通过环挤压过程。在这里,我们回顾了不同的聚合物物理模型,这些模型研究了SMC在相间通过形成动态环而在拓扑相关域(TAD)形成中的作用。我们描述了主要的物理成分,对其进行了比较,并讨论了它们与实验观察结果的相关性。
更新日期:2020-04-17
down
wechat
bug