当前位置: X-MOL 学术Annu. Rev. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interneuron Types as Attractors and Controllers.
Annual Review of Neuroscience ( IF 12.1 ) Pub Date : 2020-07-08 , DOI: 10.1146/annurev-neuro-070918-050421
Gord Fishell 1, 2, 3 , Adam Kepecs 4, 5
Affiliation  

Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.

中文翻译:


中间神经元类型为吸引子和控制器。

皮质中间神经元在形状、生理学和其他属性上表现出显着的差异,挑战我们对它们进行适当的分类。我们之前建议,中间神经元类型应根据其在皮质处理中的作用来定义。在这里,我们重新审视如何根据其作为皮质信息流控制器的分工和功能来编纂其多样性的问题。我们认为发育轨迹为理解中间神经元多样性提供了指导,并认为亚型身份是使用转录因子的配置(而不是组合)代码生成的,这些转录因子在底层基因调控网络中产生吸引子状态。我们提出了更新的中间神经元规范的三阶段模型:最初的基本步骤,将中间神经元分配到几个主要类别,然后进行明确的细化,在皮层内定居后创建子类,最后是状态确定,反映中间神经元纳入功能电路整体。我们最后讨论的研究结果表明,主要的中间神经元类别在进化上既古老又保守。我们认为,皮质回路的复杂性是由系统发育上古老的中间神经元类型产生的,并由主要神经元多样性的进化增加来补充。这表明中间神经元类型的自然神经生物学定义可能源自其发育起源和计算功能之间的匹配。

更新日期:2020-07-09
down
wechat
bug