当前位置: X-MOL 学术Yeast › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mitochondrial genetics revisited.
Yeast ( IF 2.2 ) Pub Date : 2020-01-20 , DOI: 10.1002/yea.3445
Bernard Dujon 1
Affiliation  

Mitochondrial genetics started decades ago with the discovery of yeast mutants that ignored the Mendelian rules of inheritance. Today, the many known DNA sequences of this second eukaryotic genome illustrate its eccentricity in terms of informational content and functional organisation, suggesting a yet incomplete understanding of its evolution. The hereditary transmission of mitochondrial alleles relies on complex mixes of molecular and cellular mechanisms in which recombination and limited sampling, two sources of rapid genetic changes, play central roles. It is also under the influence of invasive genetic elements whose inconstant distribution in mitochondrial genomes suggests rapid turnovers in evolving populations. This susceptibility to changes contrasts with the development of specific functional interactions between the mitochondrial and nuclear genetic compartments, a trend that is prone to limit the genetic exchanges between distinct lineages. It is perhaps this opposition and the discordant inheritance between mitochondrial and nuclear genomes that best explain the maintenance of a second genome and a second independent protein synthesising machinery in eukaryotic cells.

中文翻译:

线粒体遗传学再探。

线粒体遗传学始于数十年前,当时人们发现了忽略孟德尔遗传规则的酵母突变体。如今,该第二个真核生物基因组的许多已知DNA序列在信息含量和功能组织方面都表现出怪异性,这表明对其进化的理解还不完全。线粒体等位基因的遗传传递依赖于分子和细胞机制的复杂混合,其中重组和有限采样是快速遗传变化的两个来源,起着核心作用。它还受线粒体基因组中分布不连续的侵入性遗传因素的影响,提示不断发展的种群快速周转。这种变化的易感性与线粒体和核遗传区室之间特定功能相互作用的发展形成对比,这种趋势倾向于限制不同谱系之间的遗传交换。线粒体和核基因组之间的这种对立和不一致的遗传,也许可以最好地解释真核细胞中第二个基因组和第二个独立的蛋白质合成机制的维持。
更新日期:2019-11-01
down
wechat
bug