Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, Modeling, and Experimental Evaluation of a Compact Piezoelectric XY Platform for Large Travel Range.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( IF 3.0 ) Pub Date : 2019-11-04 , DOI: 10.1109/tuffc.2019.2951158
Jie Deng , Yingxiang Liu , Kai Li , Shijing Zhang

A novel piezoelectric XY platform driven by a single actuator was presented for large travel range and compact structure. The actuator operated at the inertial mechanism and moved the output platform step-by-step. A dynamic model of the piezoelectric actuator was established based on the Timoshenko beam theory and Galerkin procedure, which was used to aid the structure design. The dynamic model of the platform system was established based on the dynamic model of the actuator and the LuGre friction model. A prototype was fabricated and its experimental system was established, the total size was 100 x 100 x 93.5 mm3, the travel range was 15 x 15 mm2. The measured stepper motions agreed well with the simulation results and the correctness of the dynamic model was confirmed. The proposed platform achieved maximum speeds of 2.13 mm/s and 3.11 mm/s along axes X and Y, respectively, and a carrying capacity of 20 kg was achieved. Furthermore, the closed-loop control experiments including the positioning resolution and the sinusoidal trajectory tracking were carried out, a positioning resolution better than 0.4 µm and tracking error rate of 4% were achieved, which revealed the potential of the proposed piezoelectric platform in field of manipulating heavy objects with sub-micron accuracy and large travel range. Especially for some specific fields including micro particle manipulation, ultra-precision manufacturing and optical device posture adjustment where large travel range, high accuracy and multi-dimension are expected.

中文翻译:

大行程范围的紧凑型压电XY平台的设计,建模和实验评估。

提出了一种由单个执行器驱动的新型压电XY平台,该平台具有较大的行程范围和紧凑的结构。执行器在惯性机构上操作,并逐步移动输出平台。基于Timoshenko梁理论和Galerkin程序建立了压电致动器的动力学模型,该模型用于结构设计。基于执行器的动力学模型和LuGre摩擦模型,建立了平台系统的动力学模型。制作了原型并建立了实验系统,总尺寸为100 x 100 x 93.5 mm3,行程范围为15 x 15 mm2。所测量的步进运动与仿真结果吻合得很好,并确认了动力学模型的正确性。拟议的平台的最大速度为2.13 mm / s和3。沿X轴和Y轴分别为11 mm / s,承载能力为20 kg。此外,进行了包括定位分辨率和正弦轨迹跟踪在内的闭环控制实验,获得了优于0.4 µm的定位分辨率和4%的跟踪误差率,这表明了该压电平台在电子领域的潜力。以亚微米精度和较大的行程范围处理重物。特别是对于某些特定领域,包括微粒处理,超精密制造和光学设备姿势调整,这些领域都需要较大的行程范围,高精度和多维性。进行了包括定位分辨率和正弦轨迹跟踪在内的闭环控制实验,获得了优于0.4 µm的定位分辨率和4%的跟踪误差率,这表明该压电平台在重载操纵领域的潜力具有亚微米精度和较大行程范围的物体。特别是对于某些特定领域,包括微粒处理,超精密制造和光学设备姿势调整,这些领域都需要较大的行程范围,高精度和多维性。进行了包括定位分辨率和正弦轨迹跟踪在内的闭环控制实验,获得了优于0.4 µm的定位分辨率和4%的跟踪误差率,这表明该压电平台在重载操纵领域的潜力具有亚微米精度和较大行程范围的物体。特别是对于某些特定领域,包括微粒处理,超精密制造和光学设备姿势调整,这些领域都需要较大的行程范围,高精度和多维性。这揭示了所提出的压电平台在处理亚微米精度和大行程范围的重物领域中的潜力。特别是对于某些特定领域,包括微粒处理,超精密制造和光学设备姿势调整,这些领域都需要较大的行程范围,高精度和多维性。这揭示了所提出的压电平台在处理亚微米精度和大行程范围的重物领域中的潜力。特别是对于某些特定领域,包括微粒处理,超精密制造和光学设备姿势调整,这些领域都需要较大的行程范围,高精度和多维性。
更新日期:2020-04-22
down
wechat
bug