当前位置: X-MOL 学术Cytoskeleton › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling distributed forces within cell adhesions of varying size on continuous substrates.
Cytoskeleton ( IF 2.4 ) Pub Date : 2019-11-06 , DOI: 10.1002/cm.21561
Jay C Hou 1 , Ghaidan A Shamsan 1 , Sarah M Anderson 1 , Mariah M McMahon 1 , Liam P Tyler 2 , Brian T Castle 1 , Rachel K Heussner 1 , Paolo P Provenzano 1 , Daniel F Keefe 2 , Victor H Barocas 1 , David J Odde 1
Affiliation  

Cell migration and traction are essential to many biological phenomena, and one of their key features is sensitivity to substrate stiffness, which biophysical models, such as the motor‐clutch model and the cell migration simulator can predict and explain. However, these models have not accounted for the finite size of adhesions, the spatial distribution of forces within adhesions. Here, we derive an expression that relates varying adhesion radius ( R) and spatial distribution of force within an adhesion (described by s) to the effective substrate stiffness ( κsub), as a function of the Young's modulus of the substrate ( E Y), which yields the relation, urn:x-wiley:19493584:media:cm21561:cm21561-math-0001, for two‐dimensional cell cultures. Experimentally, we found that a cone‐shaped force distribution ( s = 1.05) can describe the observed displacements of hydrogels deformed by adherent U251 glioma cells. Also, we found that the experimentally observed adhesion radius increases linearly with the cell protrusion force, consistent with the predictions of the motor‐clutch model with spatially distributed clutches. We also found that, theoretically, the influence of one protrusion on another through a continuous elastic environment is negligible. Overall, we conclude cells can potentially control their own interpretation of the mechanics of the environment by controlling adhesion size and spatial distribution of forces within an adhesion.

中文翻译:

对连续大小的不同大小的细胞粘附中的分布力进行建模。

细胞迁移和牵引对于许多生物学现象至关重要,其主要特征之一就是对基质刚度的敏感性,而生物物理模型(例如运动离合器模型和细胞迁移模拟器)可以预测和解释这种基质的敏感性。但是,这些模型没有考虑到粘连的有限大小,粘连内力的空间分布。在这里,我们推导出,其涉及改变粘附半径(表达式ř粘合内)和的力的空间分布(由描述小号)到有效基板刚度(κ),作为杨氏模量的基板的(的函数ë ÿ),从而产生关系, 骨灰盒:x-wiley:19493584:media:cm21561:cm21561-math-0001,用于二维细胞培养。通过实验,我们发现锥形力分布(s = 1.05)可以描述观察到的粘附U251胶质瘤细胞变形的水凝胶的位移。同样,我们发现实验观察到的粘附半径随细胞伸出力线性增加,这与具有空间分布离合器的电动机离合器模型的预测一致。我们还发现,从理论上讲,一个突起通过连续的弹性环境对另一个突起的影响可以忽略不计。总体而言,我们得出结论,细胞可以通过控制粘附力大小和粘附力的空间分布来潜在地控制其自身对环境力学的解释。
更新日期:2019-11-06
down
wechat
bug