当前位置: X-MOL 学术J. Plant Growth. Regul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Double-Water-Film Electrode: A Device for Measuring the Resistance and the Capacitance of the Internode/Node Interface of Chara as Functions of Time and Temperature
Journal of Plant Growth Regulation ( IF 3.9 ) Pub Date : 2000-03-01 , DOI: 10.1007/s003440000010
Ogata 1
Affiliation  

A bstractA ``double-water-film electrode technique'' has been developed for the long-term characterization of the electrical properties across the interface between the nodal (N) and internodal (A or B) cells and the vacuole along the length of an internode of Chara as a function of time and temperature. The electrode unit consisted of a pair of the water-film electrodes described elsewhere (Chilcott 1988; Chilcott and others 1983; Coster and others 1984; Lucas 1985; and Ogata 1983). The distance between two water-film probes was fixed at 1.0 cm. By scanning the electrode unit, the spatial variations in electrical resistance and capacitance along the longitudinal axis of Chara were observed. Analysis was performed by applying an electrical equivalent circuit for the biomembrane (Philippson 1921). Across the internode (−A or −B)/central nodal cells interface, the specific parallel resistance (Rm) and the parallel capacitance (Cm) at 20°C were 30 ± 5 × 10−3Ωm2 and 1.5 ± 0.5 × 10−1Fm−2 (at 30 Hz), respectively. And the series resistance, corresponding to the vacuole of the internode was 8 × 10−3Ωm2. Study of temperature dependencies of Rm and Cm suggested that a dynamic homeostatic regulation was operating at the interface where numerous plasmodesmata were observed with an electron microscope (Pickett-Heaps 1967; Spanswick and Costerton 1967). Assuming that the individual cylinder of plasmodesma was filled only with cytoplasm, the number of plasmodesma per interface was estimated at 2.6 × 105.

中文翻译:

双水膜电极:一种用于测量 Chara 节点间/节点界面的电阻和电容随时间和温度变化的装置

摘要A“双水膜电极技术”已被开发用于长期表征节点(N)和节点间(A或B)细胞之间的界面以及沿长度方向的液泡之间的电特性。 Chara 的节间作为时间和温度的函数。电极单元由一对在别处描述的水膜电极组成(Chilcott 1988;Chilcott 等 1983;Coster 等 1984;Lucas 1985;和 Ogata 1983)。两个水膜探头之间的距离固定为 1.0 cm。通过扫描电极单元,观察到电阻和电容沿 Chara 纵轴的空间变化。通过对生物膜应用等效电路进行分析(Philippson 1921)。跨节间(-A 或 -B)/中央节点细胞界面,20°C 时的比并联电阻 (Rm) 和并联电容 (Cm) 为 30 ± 5 × 10−3Ωm2 和 1.5 ± 0.5 × 10−1Fm −2(在 30 Hz 时),分别为。与节间液泡对应的串联电阻为 8 × 10−3Ωm2。对 Rm 和 Cm 的温度依赖性的研究表明,动态稳态调节在用电子显微镜观察到大量胞间连丝的界面处起作用(Pickett-Heaps 1967;Spanswick 和 Costerton 1967)。假设单个胞间连丝圆柱体仅充满细胞质,则每个界面的胞间连丝数估计为 2.6 × 105。分别为 5 × 10−1Fm−2(在 30 Hz 时)。与节间液泡对应的串联电阻为 8 × 10−3Ωm2。对 Rm 和 Cm 的温度依赖性的研究表明,动态稳态调节在用电子显微镜观察到大量胞间连丝的界面处起作用(Pickett-Heaps 1967;Spanswick 和 Costerton 1967)。假设单个胞间连丝圆柱体仅充满细胞质,则每个界面的胞间连丝数估计为 2.6 × 105。分别为 5 × 10−1Fm−2(在 30 Hz 时)。与节间液泡对应的串联电阻为 8 × 10−3Ωm2。对 Rm 和 Cm 的温度依赖性的研究表明,动态稳态调节在用电子显微镜观察到大量胞间连丝的界面处起作用(Pickett-Heaps 1967;Spanswick 和 Costerton 1967)。假设单个胞间连丝圆柱体仅充满细胞质,则每个界面的胞间连丝数估计为 2.6 × 105。斯潘斯维克和科斯特顿,1967 年)。假设单个胞间连丝圆柱体仅充满细胞质,则每个界面的胞间连丝数估计为 2.6 × 105。斯潘斯维克和科斯特顿,1967 年)。假设单个胞间连丝圆柱体仅充满细胞质,则每个界面的胞间连丝数估计为 2.6 × 105。
更新日期:2000-03-01
down
wechat
bug