当前位置: X-MOL 学术Int. J. Plant Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree SpeciesMetrosideros polymorpha
International Journal of Plant Sciences ( IF 2.3 ) Pub Date : 2000-05-01 , DOI: 10.1086/314271
Melcher , Cordell , Jones , Scowcroft , Niemczura , Giambelluca , Goldstein

Population‐specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8‐yr‐old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low‐elevation field plants exhibited damage at −2°C, before the onset of ice formation, which occurred at −5.7°C. Leaves of high‐elevation plants exhibited damage at ca. −8.5°C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra‐ and intracellular leaf water fractions from high‐elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant’s foliage at tree line. The irreversible tissue‐damage temperature decreased by ca. 7°C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively low elevation in Hawaii compared with continental tree lines, which can be up to 1500 m higher. If the elevation of tree line is influenced by the inability of M. polymorpha leaves to supercool to lower subzero temperatures, then it will be the first example that freezing damage resulting from limited supercooling capacity can be a factor in tree line formation.

中文翻译:

夏威夷树种Metrosideros polymorpha从海平面到树线的过冷能力增加

在夏威夷莫纳罗亚火山东侧,沿着从海平面到林木线(位于海平面以上约 2500 米处)的海拔梯度,研究了 Metrosideros polymorpha 叶片抗冻性的种群特异性差异。此外,我们还研究了从相同田间种群中收集的种子在公共花园中生长的 8 岁树苗。低海拔田间植物的叶子在 -2°C 出现损伤,然后在 -5.7°C 开始结冰。高海拔植物的叶子在大约 -8.5°C,同时在叶组织中形成冰,这是植物通过过冷避免在自然环境中冻结的典型特征。核磁共振研究表明,来自高海拔植物的细胞外和细胞内叶水部分的水分子的流动性受到限制,这与其低水含量和高渗透活性溶质水平一致。水分子流动性的降低可能会延迟冰的成核和/或冰的生长,因此可能会增强植物组织过冷的能力。与过冷能力的特定差异相关的叶性状部分是遗传决定的,部分是环境诱导的。有证据表明,较低的质外体含水量和较小的细胞间隙与树木线处植物叶子的较大过冷能力有关。不可逆的组织损伤温度降低了约 7°C 从海平面到田间种群叶子中的树线。然而,这种减少似乎只是大到足以让 M. polymorpha 树避免叶组织因冻结到大约 10 倍的水平而造成的损伤。海拔 2500 m,这也是当前 Mauna Loa 东侧的林木线位置。与可高达 1500 m 的大陆树线相比,地瓜叶有限的抗冻性可能是夏威夷海拔相对较低的树线出现的部分原因。如果林木线的高度受到地榆树叶无法过冷至低于零下温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。这种减少似乎只是足够大,以允许 M. polymorpha 树避免叶组织因冻结到大约 10 倍的水平而造成的损伤。海拔 2500 m,这也是当前 Mauna Loa 东侧的林木线位置。与可高达 1500 m 的大陆树线相比,地瓜叶有限的抗冻性可能是夏威夷海拔相对较低的树线出现的部分原因。如果林木线的海拔受到地榆树叶无法过冷至低于零度以下的温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。这种减少似乎只是足够大,以允许 M. polymorpha 树避免叶组织因冻结到大约 10 倍的水平而造成的损伤。海拔 2500 m,这也是当前 Mauna Loa 东侧的林木线位置。与可高达 1500 m 的大陆树线相比,地瓜叶有限的抗冻性可能是夏威夷海拔相对较低的树线出现的部分原因。如果林木线的海拔受到地榆树叶无法过冷至低于零度以下的温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。这也是 Mauna Loa 东侧的当前林木线位置。与可高达 1500 m 的大陆树线相比,地瓜叶有限的抗冻性可能是夏威夷海拔相对较低的树线出现的部分原因。如果林木线的高度受到地榆树叶无法过冷至低于零下温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。这也是 Mauna Loa 东侧的当前林木线位置。与可高达 1500 m 的大陆树线相比,地瓜叶有限的抗冻性可能是夏威夷海拔相对较低的树线出现的部分原因。如果林木线的海拔受到地榆树叶无法过冷至低于零度以下的温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。最高可达 1500 m。如果林木线的海拔受到地榆树叶无法过冷至低于零度以下的温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。最高可达 1500 m。如果林木线的海拔受到地榆树叶无法过冷至低于零度以下的温度的影响,那么这将是第一个例子,即由于过冷能力有限而导致的冻害可能是树线形成的一个因素。
更新日期:2000-05-01
down
wechat
bug