当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Latticed Channel Model of Touchable Communication Over Capillary Microcirculation Network.
IEEE Transactions on NanoBioscience ( IF 3.7 ) Pub Date : 2019-09-25 , DOI: 10.1109/tnb.2019.2943671
Yu Zhou , Yifan Chen

Recent progress on bioresorbable and bio-compatible miniature systems provides prospects for developing novel nanorobots operating inside the human body. These nanoscale systems are expected to dissolve in vivo and cause no side effect after completing their tasks. Motivated by these advancements, we have developed the analytical framework of touchable molecular communication (TouchCom) to describe the process of direct drug targeting (DDT) using externally controllable nanorobots. Built upon our previous work, we develop a novel latticed channel model of TouchCom for an interconnected capillary network near a targeted tumor area. Specifically, we propose a two-dimensional grid to synthesize the microcirculation environment, which is used to describe the propagation process of nanorobots. Furthermore, by applying the concept of multiple-input multiple-output (MIMO) systems in wireless communications to the therapeutic window in cancer treatment, we propose a MIMO DDT strategy in the latticed channel to enhance the targeting efficiency while minimizing the adverse effect of drug toxicity. Based on the proposed model, we study the influence of blood flow direction on the efficiency of DDT, and introduce a compensation strategy with the help of an external guiding field to mitigate the misalignment between the direction of blood flow and the tumor location.

中文翻译:

毛细管微循环网络上可触摸通信的分层通道模型。

生物可吸收和生物相容性微型系统的最新进展为开发在人体内部运行的新型纳米机器人提供了前景。这些纳米级系统有望在体内溶解并且在完成其任务后不会引起任何副作用。受这些进步的推动,我们开发了可触摸分子通讯(TouchCom)的分析框架,以描述使用外部可控纳米机器人进行直接药物靶向(DDT)的过程。在我们之前的工作的基础上,我们为目标肿瘤区域附近的互连毛细管网络开发了TouchCom的新型晶格通道模型。具体来说,我们提出了一个二维网格来合成微循环环境,用于描述纳米机器人的传播过程。此外,通过将无线通信中的多输入多输出(MIMO)系统的概念应用于癌症治疗中的治疗窗口,我们提出了格子通道中的MIMO DDT策略,以提高靶向效率,同时最大程度降低药物毒性的不利影响。基于提出的模型,我们研究了血流方向对DDT效率的影响,并在外部引导场的帮助下引入了一种补偿策略,以减轻血流方向与肿瘤位置之间的失准。
更新日期:2019-11-01
down
wechat
bug