当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quality and Capacity Analysis of Molecular Communications in Bacterial Synthetic Logic Circuits.
IEEE Transactions on NanoBioscience ( IF 3.7 ) Pub Date : 2019-07-29 , DOI: 10.1109/tnb.2019.2930960
Daniel P. Martins , Michael Taynnan Barros , Sasitharan Balasubramaniam

Synthetic logic circuits have been proposed as potential solutions for theranostics of biotechnological problems. One proposed model is the engineering of bacteria cells to create logic gates, and the communication between the bacteria populations will enable the circuit operation. In this paper, we analyze the quality of bacteria-based synthetic logic circuit through molecular communications that represent communication along a bus between three gates. In the bacteria-based synthetic logic circuit, the system receives environmental signals as molecular inputs and will process this information through a cascade of synthetic logic gates and free diffusion channels. We analyze the performance of this circuit by evaluating its quality and its relationship to the channel capacity of the molecular communications links that interconnect the bacteria populations. Our results show the effect of the molecular environmental delay and molecular amplitude differences over both the channel capacity and circuit quality. Furthermore, based on these metrics, we also obtain an optimum region for the circuit operation resulting in an accuracy of 80% for specific conditions. These results show that the performance of synthetic biology circuits can be evaluated through molecular communications, and lays the groundwork for combined systems that can contribute to future biomedical and biotechnology applications.

中文翻译:

细菌合成逻辑电路中分子通讯的质量和容量分析。

已经提出了合成逻辑电路作为生物技术问题的诊断学的潜在解决方案。一种提出的模型是对细菌细胞进行工程设计以创建逻辑门,细菌种群之间的通信将使电路能够运行。在本文中,我们通过分子通信分析了细菌合成逻辑电路的质量,该分子通信表示沿着三个门之间的总线进行的通信。在基于细菌的合成逻辑电路中,系统接收环境信号作为分子输入,并将通过级联的合成逻辑门和自由扩散通道来处理此信息。我们通过评估电路的质量以及与细菌种群之间相互联系的分子通信链路的通道容量之间的关系来分析该电路的性能。我们的结果显示了分子环境延迟和分子幅度差异对通道容量和电路质量的影响。此外,基于这些指标,我们还获得了电路工作的最佳区域,在特定条件下的精度为80%。这些结果表明,合成生物学电路的性能可以通过分子通讯来评估,并且为可以为未来生物医学和生物技术应用做出贡献的组合系统奠定了基础。我们的结果显示了分子环境延迟和分子幅度差异对通道容量和电路质量的影响。此外,基于这些指标,我们还获得了电路工作的最佳区域,在特定条件下的精度为80%。这些结果表明,可以通过分子通讯来评估合成生物学电路的性能,并为可以为未来生物医学和生物技术应用做出贡献的组合系统奠定基础。我们的结果显示了分子环境延迟和分子幅度差异对通道容量和电路质量的影响。此外,基于这些指标,我们还获得了电路工作的最佳区域,在特定条件下的精度为80%。这些结果表明,合成生物学电路的性能可以通过分子通讯来评估,并且为可以为未来生物医学和生物技术应用做出贡献的组合系统奠定了基础。
更新日期:2019-11-01
down
wechat
bug