当前位置: X-MOL 学术J. Biol. Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action.
JBIC Journal of Biological Inorganic Chemistry ( IF 3 ) Pub Date : 2019-09-12 , DOI: 10.1007/s00775-019-01717-7
Parveen Nisar 1 , Nasir Ali 1 , Lubna Rahman 1 , Muhammad Ali 1 , Zabta Khan Shinwari 1, 2, 3
Affiliation  

Increasing antimicrobial resistance is a clinical crisis worldwide. Recent progress in the field of green synthesis has fascinated scientists and researchers to explore its potentials against pathogenic microbes. Bioinspired-metal-based nanoparticles (silver, copper, gold, zinc, etc.) have been reported to be tested against both Gram-positive and Gram-negative bacteria such as B. subtilis, E. coli, Staphylococcus aureus, etc., as well as some pathogenic fungi including A. niger, F. oxysporum, A. fumigatus, etc., and are testified to exhibit inhibitory effects against pathogenic microbes. The possible modes of action of these metal nanoparticles include: (a) excess production of reactive oxygen species inside microbes; (b) disruption of vital enzymes in respiratory chain via damaging microbial plasma membranes; (c) accumulation of metal ions in microbial membranes; (d) electrostatic attraction between metal nanoparticles and microbial cells which disrupt metabolic activities; and (e) inhibition of microbial proteins/enzymes by increased production of H2O2. Although these pathways are interconnected, information on potential mechanism of most of these biogenic nanoparticles is still limited. Further exploration of these mechanisms could help in tackling the burning issue of antibiotics resistance.

中文翻译:

生物合成的金属纳米粒子的抗菌活性:作用机理的见解。

抗菌素耐药性的增加是全世界的临床危机。绿色合成领域的最新进展吸引了科学家和研究人员,以探索其对抗病原微生物的潜力。据报道,基于生物灵感金属的纳米颗粒(银,铜,金,锌等)已针对革兰氏阳性和革兰氏阴性细菌(例如枯草芽孢杆菌,大肠杆菌,金黄色葡萄球菌等)进行了测试,以及一些病原真菌,包括黑曲霉,尖孢镰刀菌,烟曲霉等,并经证明对病原微生物具有抑制作用。这些金属纳米粒子的可能作用方式包括:(a)微生物内部过量产生活性氧;(b)通过破坏微生物质膜破坏呼吸链中的重要酶;(c)金属离子在微生物膜中的积累;(d)破坏代谢活动的金属纳米粒子与微生物细胞之间的静电吸引;(e)通过增加H2O2的产生来抑制微生物蛋白/酶。尽管这些途径是相互联系的,但有关大多数这些生物纳米颗粒潜在机制的信息仍然有限。对这些机制的进一步探索可能有助于解决抗生素耐药性这一紧迫的问题。
更新日期:2019-11-01
down
wechat
bug