当前位置: X-MOL 学术CSH Perspect. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-Molecule Analysis of Reverse Transcriptase Enzymes.
Cold Spring Harbor Perspectives in Biology ( IF 6.9 ) Pub Date : 2019-09-03 , DOI: 10.1101/cshperspect.a032458
Linnea I Jansson 1, 2 , Michael D Stone 2, 3
Affiliation  

The original discovery of enzymes that synthesize DNA using an RNA template appeared to contradict the central dogma of biology, in which information is transferred, in a unidirectional way, from DNA genes into RNA molecules. The paradigm-shifting discovery of RNA-dependent DNA polymerases, also called reverse transcriptases (RTs), reshaped existing views for how cells function; however, the scope of the impact RTs impose on biology had yet to be realized. In the decades of research since the early 1970s, the biomedical and biotechnological significance of retroviral RTs, as well as the evolutionarily related telomerase enzyme, has become exceedingly clear. One common theme that has emerged in the course of RT-related research is the central role of nucleic acid binding and dynamics during enzyme function. However, directly interrogating these dynamic properties is challenging because of the stochastic properties of biological macromolecules. In this review, we describe how the development of single-molecule biophysical techniques has opened new windows through which to observe the dynamic behavior of this remarkable class of enzymes. Specifically, we focus on how the powerful single-molecule Förster resonance energy transfer (FRET) method has been exploited to study the structure and function of the human immunodeficiency virus (HIV) RT and telomerase ribonucleoprotein (RNP) enzymes. These exciting studies have refined our understanding of RT catalysis, have revealed unforeseen structural rearrangements between RTs and their nucleic acid substrates, and have helped to characterize the mode of action of RT-inhibiting drugs. We conclude with a discussion of how the ongoing development of single-molecule technologies will continue to empower researchers to probe RT mechanisms in new and exciting ways.

中文翻译:

逆转录酶的单分子分析。

使用 RNA 模板合成 DNA 的酶的最初发现似乎与生物学的中心法则相矛盾,在生物学中心法则中,信息以单向方式从 DNA 基因转移到 RNA 分子。RNA 依赖性 DNA 聚合酶(也称为逆转录酶 (RT))的范式转变发现重塑了现有的关于细胞功能的观点;然而,RTs 对生物学的影响范围尚未实现。在 1970 年代初期以来的数十年研究中,逆转录病毒 RT 以及与进化相关的端粒酶的生物医学和生物技术意义已变得非常清楚。在 RT 相关研究过程中出现的一个共同主题是核酸结合和动力学在酶功能过程中的核心作用。然而,由于生物大分子的随机特性,直接询问这些动态特性具有挑战性。在这篇综述中,我们描述了单分子生物物理技术的发展如何为观察这类非凡酶的动态行为打开了新的窗口。具体而言,我们专注于如何利用强大的单分子 Förster 共振能量转移 (FRET) 方法来研究人类免疫缺陷病毒 (HIV) RT 和端粒酶核糖核蛋白 (RNP) 酶的结构和功能。这些激动人心的研究加深了我们对 RT 催化的理解,揭示了 RT 与其核酸底物之间不可预见的结构重排,并有助于表征 RT 抑制药物的作用模式。
更新日期:2019-11-01
down
wechat
bug